

2003

Annual Tropical Cyclone Report

U.S. Naval Pacific Meteorology and Oceanography Center/ Joint Typhoon Warning Center

Pearl Harbor, Hawaii

Stiched MODIS true color image of four tropical cyclones in the South Indian Ocean on 12 February 2003 taken between 0400 Z and 1010Z. From west to east, TC 16S (Gerry), TC 17S (Hape), TC 18S (Isha) and TC 14S (Fiona). Image courtesy of MODIS Rapid Response Team, NASA Goddard Space Flight Center.

Completed by Direction of:
Peter Furze
Captain, United States Navy
Commanding Officer
file:///C|/Documents\%20and\%20Settings/All\%20Users/Documents/ATCR_2003\%20GoLive/ATCR_2003\%20folder/ATCR_2003/index.html (1 of 3) [4/10/2005 11:18:58 AM]

2003 Annual Tropical Cyclone Report

Amanda Preble	
Lieutenant Colonel, United States Air Force	
Director, Joint Typhoon Warning Center	
LT A.C. (Christy) Bryant, USN - Editor	

2003 Annual Tropical Cyclone Report

TC 12P Beni TC 13P Cilla TC 14S Fiona TC 15P Dovi TC 16S Gerry TC 17S Hape TC 18S Isha TC 19S Japhet TC 20S Graham TC 21S Harriet TC 22P Erica TC 23S Kalunde TC 24S Craig TC 25P Eseta TC 26S Inigo TC 27P Fili TC 28S Manou TC 29P Gina	
3. TROPICAL CYCLONE FIX DATA	
3.12003 SEASON	
4. SUMMARY OF FORECAST	
VERIFICATION	甲
4.1 ANNUAL FORECAST VERIFICATION	
4.2 TESTING AND RESULTS	

2003

Annual Tropical Cyclone Report

U.S. Naval Pacific Meteorology and Oceanography Center/ Joint Typhoon Warning Center

Pearl Harbor, Hawaii

Stiched MODIS true color image of four tropical cyclones in the South Indian Ocean on 12 February 2003 taken between 0400Z and 1010Z. From west to east, TC 16S (Gerry), TC 17S (Hape), TC 18S (Isha) and TC 14S (Fiona). Image courtesy of MODIS Rapid Response Team, NASA Goddard Space Flight Center.

Completed by Direction of:

Peter Furze

Captain, United States Navy

Commanding Officer

Amanda Preble

Director, Joint Typhoon Warning Center

LT A. C. (Christy) Bryant, USN - Editor

EDITOR'S NOTE

The production of the Annual Tropical Cyclone Report (ATCR) has always been a time and resource intensive project and, with 2003, the time has come for this to change. In a time of decreasing budgets and fewer personnel, the ATCR may have become a thing of the past. In an effort to continue to provide this information to the customers and researchers that use it, several changes have been made that reflect changing technology while meeting the needs of the user. This is the first step towards a more streamlined ATCR that can be updated quickly and reach the user sooner.

First, the format is new and different. Our previous format was based on the premise that a final product would be a printed version. Since our users primarily use electronic format, we have taken a major step towards a primarily electronic finished product. Depending on the feedback we receive from those who use this year's document, this format may change even further.

Expanding menus indicated by plus (+) and minus (-) signs in the frame on the left side of the screen should make navigation of the ATCR easier for most users. Simply click any (+) sign to open a menu another level.

Updates to the ATCR will be relatively frequent and occur whenever a storm review is complete or when new data is made available. To communicate updates, there is a banner on the cover page that will indicate the latest update and the date of the update.

All the chapters that our users have become familiar with still exist, with the exception of Chapter 6: Research, however they have been re-organized and combined. Instead of a Chapter 5: TC Verification, the verification information for each storm has been included on an expanded storm summary page.

We understand that there is still a need to print the ATCR, but less frequently the entire book. More often, a single storm is needed or a specific selection of data. To maximize the ease with which this is done, print friendly icons will exist on every storm page that will open a .pdf file of that page, ready for print. You can download Adobe Acrobat Reader, free of charge, from the Adobe website.

By starting over, from the ground up, JTWC hopes to provide our users with what they need in a timely manner and in a format that is convenient for the largest percentage of users. During the coding for this, I deliberately left the html code unconcealed in any way. If you like any part of it, please feel free to adapt the basic html code for your own purposes. Feedback is much appreciated and significant feedback may help shape this product in future years. You can

Special thanks for this ATCR go to Captain S. Vilpors, who passed on much guidance on what was really needed and provided statistics, TSgt R. Jacobs, who provided most of the graphics used for the storms, and AG2 L. Kelsey, who created best track images for every storm.

LT A. C. Bryant, USN
Editor, 2003 ATCR

| COVER |
| :--- | :--- |
| EDITOR'S NOTE |
| 1. WESTERN NORTH PACIFIC AND NORTH |
| INDIAN OCEAN TROPICAL CYCLONES |
| T.1 WESTERN NORTH PACIFIC OCEAN |
| TROPICAL CYCLONES |
| 1.2 NORTH INDIAN OCEAN TROPICAL |
| CYCLONES |
| PACIFIC AND NORTH INDIAN OCEAN |
| TROPICAL CYCLONES |

TS 01W Yanyan
TY 02W Kujira
TD 03W
TY 04W Chan-Hom
TS 05W Linfa
TS 06W Nangka
TY 07W Soudelor
TY 08W Koni
STY 09W Imbudo
TY 10W Morakot
TY 11W Etau
TY 12W Krovanh
TS 13W Vamco
TY 14W Dujuan

TC 14S Fiona TC 15P Dovi TC 16S Gerry TC 17S Hape TC 18S Isha TC 19S Japhet TC 20S Graham TC 21S Harriet TC 22P Erica TC 23S Kalunde TC 24S Craig TC 25P Eseta TC 26S Inigo TC 27P Fili TC 28S Manou TC 29P Gina
3. TROPICAL CYCLONE FIX DATA
3.1 2003 SEASON
4. SUMMARY OF FORECAST
VERIFICATION
4.1 ANNUAL FORECAST VERIFICATION
4.2 TESTING AND RESULTS

1. SUMMARY OF WESTERN NORTH PACIFIC AND NORTH INDIAN OCEAN TROPICAL CYCLONES

1.1 WESTERN NORTH PACIFIC OCEAN TROPICAL CYCLONES

All Information for Northwestern Pacific Not Yet Complete

Tropical cyclone genesis regions compared to the 15-year average are shown in Figure 1-1. This year's tropical cyclones are listed in Table 1-1. Table 1-2 shows the monthly distribution of tropical cyclones for each year since 1959 and Table 1-3 shows the monthly average occurrence of tropical storms separated into: (1) typhoons only; and (2) tropical storms and typhoons. A summary of this year's Tropical Cyclone Formation Alerts is shown in Table 1-4. The annual number of tropical cyclones of tropical storm strength and higher appear in Figure 1-2, while the number of super typhoons are shown in Figure 1-3. Figure 1-4 represents a composite of the 45 year average for tropical cyclones. Composites of the tropical cyclone best tracks for the western North Pacific appear following Figure 1-4.

Figure 1-1. Comparison of the number of tropical cyclones that developed within 3 designated areas for 2000 through 2003 and the 15-year average.

Table 1-1 WESTERN NORTH PACIFIC SIGNIFICANT TROPICAL CYCLONES FOR 2003					
(01 JAN 2003-31 DEC 2003)					
TC	NAME *	PERIOD	WARNINGS ISSUED	EST MAX SFC WINDS KTS (M/SEC)	$\begin{aligned} & \text { MSLP } \\ & (\mathrm{MB})^{* *} \end{aligned}$
TS 01W	YanYan	15JAN-21JAN	22	50 (25)	987
STY 02W	Kujira	09APR-22APR	66	135 (68)	904
TD 03W		17MAY-20MAY	11	30 (15)	1000
TY 04W	Chan-hom	19MAY-27MAY	33	115 (58)	927
TS 05W	Linfa	25MAY-30MAY	24	60 (30)	980
TS 06W	Nangka	31MAY-03JUN	11	50 (25)	987
TY 07W	Soudelor	11JUN-18JUN	33	115 (58)	927
TY 08W	Koni	15JUL-22JUL	30	65 (33)	976
STY 09W	Imbudo	16JUL-24JUL	32	130 (65)	910
TY 10W	Morakot	01AUG-05AUG	15	65 (33)	976
TY 11W	Etau	02AUG-09AUG	28	110 (55)	933
TY 12W	Krovanh	15AUG-26AUG	40	90 (45)	954
TS 13W	Vamco	19AUG-20AUG	7	35 (18)	997
TY 14W	Dujuan	28AUG-03SEP	24	125 (63)	916
STY 15W	Maemi	05SEP-13SEP	31	150 (75)	885
TY 16W	Choi-Wan	17SEP-22SEP	21	95 (48)	949
TY 17W	Koppu	24SEP-30SEP	24	90 (45)	954
TD 18W		06OCT-100CT	15	25 (13)	1002
TD 19W		120CT-130CT	5	30 (15)	1000
TY 20W	Ketsana	180CT-260CT	30	125 (63)	916
TY 21W	Parma	200CT-310CT	44	130 (65)	910
TD 22W		220CT-230CT	7	25 (13)	1002
TS 23W		230CT-280CT	14	35 (18)	997
TY 24W	Melor	300CT-04NOV	20	70 (35)	972
TY 25W	Nepartak	12NOV-19NOV	29	75 (38)	967

STY 26W	Lupit	20NOV-01DEC	47	$145(73)$	891
TS 27W		24DEC-27DEC	15	$35(18)$	997
		TOTAL \#	678		
* As Designated by WMO authorized RSMC					
** MSLP Converted from estimated maximum surface winds using Atkinson/Holiday wind-pressure relationship					

	000	000	000	100	200	100	310	531	532	112	122	101	20108
1967	1	0	2	1	1	1	8	10	8	4	4	1	41
	010	000	110	100	010	100	332	343	530	211	400	10	20156
1968	0	1	0	1	0	4	3	8	4		4		31
	00	00	00	10	000	20	12	34	40	51	400	000	20
1969	1	0	1	1	0	0	3	3	6	5	2	1	23
	100	000	01	100	000	00	21	210	20	10	11	010	13
1970	0	1	0	0	0	2	3		4	6	4	0	27
	000	10	00	000	000	11	02	42	22	32	13	000	12
1971	1	0	1	2	5	2	8	5	7	4	2	0	37
	01	000	010	200	230	200	620	31	511	310	110	000	241
1972	1	0	1	0	0	4	5	5	6	5	2	3	32
	100	000	001	00	000	22	41	32	41	41	200	210	22
1973	0	0	0	0	0	0	7	6	3	4	3	0	23
	000	000	000	000	000	000	430	23	20	400	030	000	1292
1974	1	0	1	1	1	4	5	7	5	4	4	2	35
	010	00	10	010	100	12	3	23	32	400	20	020	51
1975	1	0	0	1	0	0	1	6	5	6	3	2	25
	10	000	000	001	000	000	01	41	41	32	21	020	146
1976	1	1	0	2	2	2	4	4	5	0	2	2	25
	100	010	000	110	200	200	220	130	410	000	110	020	141
1977	0	0	1	0	1	1	4	2	5	4	2	1	21
	00	000	010	000	001	010	30	02	230	310	200	100	118
1978	1	0	0	1	0	3	4	8	4	7	4	0	32
	01	00	00	10	000	03	31	341	310	41	12	000	15
1979	1	0	1	1	2	0	5	4	6	3	2	3	28
	10	000	100	100	011	00	22	20	33	210	110	11	1495
1980	0	0	1	1	4	1	5	3	7	4	1	1	28
	000	000	00	010	220	010	31	20	51	220	10	01	1594
1981	0	0	1	1	1	2	5	8	4	2	3	2	29
	000	00	100	10	010	200	230	25	400	110	21	00	1612
1982	0	0	3	0	1	3	4	5	6	4	1	1	28
	000	000	210	000	100	120	220	500	321	301	100	100	197
1983	0	0	0	0	0	1	3	6	3	5	5	2	25
	0	000	000	000	00	01	30	23	11	320	320	020	1211
1984	0	0	0	0	0	2	5	7	4	8	3	1	30
	000	000	000	000	000	020	410	232	130	521	300	100	161
1985	2	0	0	0	1	3	1	7	5	5	1	2	27
	020	000	00	0	0	201	100	520	320	410	010	110	1791

1986	0	1	0	1	2	2	2	5	2	5	4	3	27
	000	100	000	100	110	110	200	410	200	320	220	210	1980
1987	1	0	0	1	0	2	4	4	7	2	3	1	25
	100	000	000	010	000	110	400	310	511	200	120	100	1861
1988	1	0	0	0	1	3	2	5	8	4	2	1	27
	100	000	000	000	100	111	110	230	260	400	200	010	14121
1989	1	0	0	1	2	2	6	8	4	6	3	2	35
	010	000	000	100	200	110	231	332	220	600	300	101	21104
1990	1	0	0	1	2	4	4	5	5	5	4	1	32
	100	000	000	010	110	211	220	500	410	230	310	100	21101
1991	0	0	2	1	1	1	4	8	6	3	6	0	32
	000	000	110	010	100	100	400	332	420	300	330	000	20102
1992	1	1	0	0	0	3	4	8	5	6	5	0	33
	100	010	000	000	000	210	220	440	410	510	311	000	21111
1993	0	0	2	2	1	2	5	8	5	6	4	3	38
	000	000	011	002	010	101	320	611	410	321	112	300	2198
1994	1	0	1	0	2	2	9	9	8	7	0	2	41
	001	000	100	000	101	020	342	630	440	511	000	110	21155
1995	1	0	0	0	1	2	3	7	7	8	2	3	34
	001	000	000	000	010	020	210	421	412	512	020	012	15118
1996	1	1	0	2	2	0	7	10	7	5	6	3	43
	001	001	000	011	110	000	610	433	610	212	132	111	211210
1997	1	0	0	2	3	3	4	8	4	6	1	1	33
	010	000	000	110	120	300	310	611	310	411	100	100	2382
1998	0	0	0	0	0	0	3	3	8	6	3	4	27
	000	000	000	000	000	000	012	210	413	213	030	112	9810
1999	1	1	0	3	0	1	5	9	6	2	3	3	34
	010	010	000	210	000	100	113	423	240	110	111	003	121210
2000	0	0	0	0	4	0	8	9	6	3	3	1	34
	000	000	000	000	112	000	233	432	411	210	111	100	15109
2001	0	1	0	1	1	2	6	7	5	3	3	4	33
	000	001	000	001	010	200	411	331	500	300	120	220	2094
2002	1	1	1	1	2	3	6	8	3	5	1	1	33
	010	100	001	001	101	300	321	431	120	302	100	100	1887
2003	1	0	0	1	3	2	2	5	3	6	3	1	27
	010	000	000	100	111	110	200	410	300	213	300	010	1764
(1959-2003)													

MEAN	0.6	0.3	0.5	0.8	1.3	2.0	4.6	6.6	5.6	4.7	2.9	1.6	31.7
CASES	26	14	24	37	60	90	209	299	254	213	130	72	1427

The criteria used in TABLE 12 are as follows:

1) If a tropical cyclone was first warned on during the last two days of a particular month and continued into the next month for longer than two days, then that system was attributed to the second month.
2) If a tropical cyclone was warned on prior to the last two days of a month, it was attributed to the first month, regardless of how long the system lasted.
3) If a tropical cyclone began on the last day of the month and ended on the first day of the next month, that system was attributed to the first month. However, if a tropical cyclone began on the last day of the month and continued into the next month for only two days, then it was attributed to the second month.

Table 1-2 Legend:		
Total month/year		
GTE 64 knots (Typhoon)	35 to 63 knots (Tropical Storm)	LTE 34 knots (Tropical Depression)

TABLE 1-3 WESTERN NORTH PACIFIC TROPICAL CYCLONES

TYPHOONS (1945-1959)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS
MEAN	0.3	0.1	0.3	0.4	0.7	1	2.9	3.1	3.3	2.4	2	0.9	16.4
CASES	5	1	4	6	10	15	29	46	49	36	30	14	245
TYPHOONS (1960-2003)													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS
MEAN	0.2	0.1	0.2	0.4	0.7	1.1	2.7	3.5	3.4	3.1	1.6	0.7	17.6
CASES	10	3	8	19	30	48	119	153	148	137	70	31	776

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS
MEAN	0.4	0.1	0.5	0.5	0.8	1.6	2.9	4	4.2	3.3	2.7	1.2	22.2
CASES	6	2	7	8	11	22	44	60	64	49	41	18	332
TROPICAL STORMS AND TYPHOONS (1960-2003)													
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTALS	
MEAN	0.5	0.2	0.4	0.7	1.1	1.8	4.1	5.6	5	4.1	2.6	1.3	27.5
CASES	23	10	17	30	50	78	182	246	221	181	116	56	1210

TABLE 1-4

TROPICAL CYCLONE FORMATION ALERTS FOR THE
WESTERN NORTH PACIFIC OCEAN FOR 1976-2003

YEAR	INITIAL TCFAS	TROPICAL CYCLONES WITH TCFAS	TOTAL TROPICAL CYCLONES	PROBABILITY OF TCFA WITHOUT WARNING*	PROBABILITY OF TCFA BEFORE WARNING
1976	34	25	25	26%	100%
1977	26	20	21	23%	95%
1978	32	27	32	16%	84%
1979	27	23	28	15%	82%
1980	37	28	28	24%	100%
1981	29	28	29	3%	96%
1982	36	26	28	28%	93%
1983	31	25	25	19%	100%
1984	37	30	30	19%	100%
1985	39	26	27	33%	96%

1. SUMMARY OF WESTERN NORTH PACIFIC AND NORTH INDIAN OCEAN TROPICAL CYCLONES

1986	38	27	27	29\%	100\%
1987	31	24	25	23\%	96\%
1988	33	26	27	21\%	96\%
1989	51	32	35	37\%	91\%
1990	33	30	31	9\%	97\%
1991	37	29	31	22\%	94\%
1992	36	32	32	11\%	100\%
1993	50	35	38	30\%	92\%
1994	50	40	40	20\%	100\%
1995	54	33	35	39\%	94\%
1996	41	39	43	5\%	91\%
1997	36	30	33	17\%	91\%
1998	38	18	27	53\%	67\%
1999	39	29	33	26\%	88\%
2000	40	31	34	23\%	91\%
2001	34	28	33	18\%	82\%
2002	39	31	33	21\%	94\%
2003	31	27	27	1\%	100\%
$\begin{array}{\|l\|} \hline(1976- \\ 2003) \end{array}$					
MEAN:	37.1	28.5	30.6	21.82\%	93.21\%
TOTALS:	1039	779	857		
* Percentage of initial TCFAs not followed by warnings.					

Figure 1-2. Tropical cyclones of tropical storm or greater intensity in the western North Pacific (19592003).

Figure 1-3. Number of western North Pacific super typhoons (1959-2003).

NWPAC Monthly Tropical Cyclone Climatology (1959-2003)

Figure 1-4. Average monthly tropical cyclones of all strengths (1959-2003).

Go To: Chapter 1.2 North Indian Tropical Cyclones

1.2 NORTH INDIAN OCEAN TROPICAL CYCLONES

Tropical cyclone genesis regions are compared to the overall 25-year average in Figure 1-4. This year's North Indian Ocean tropical cyclones are listed in Table 1-5. The monthly distribution of tropical cyclones for each year since 1975 is shown in Table 1-6. Composites of the tropical cyclone best tracks for the Northern Indian Ocean appear following Table 1-6.

Figure 1-5. Comparison of the number of tropical cyclones that developed in Bay of Bengal and Arabian Sea for 2000 through 2003 and the 25 -year average.

Table 1-5
NORTH INDIAN OCEAN SIGNIFICANT TROPICAL CYCLONES FOR 2003
(01 JAN 2003-31 DEC 2003)

TC	NAME	PERIOD	WARNINGS ISSUED	EST MAX SFC WINDS KTS (M/SEC)	MSLP $(\text { MB })^{*}$
01B	-	10 May - 19 May	15	$65(33)$	976
02A	-	12 Nov - 15 Nov	11	$85(44)$	958
03B	-	12 Dec - 15 Dec	5	$55(28)$	984
		JTWC Total	33		
*MSLP Converted from estimated maximum surface winds using Atkinson/Holiday wind-pressure relationship					

	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	010	010	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	010	000	110	140
1978	0	0	0	0	1	0	0	0	0	1	2	0	4
	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	010	000	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	010	200	000	220
1979	0	0	0	0	1	1	0	0	2	1	2	0	7
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	100	010	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	011	010	011	000	142
1980	0	0	0	0	0	0	0	0	0	0	1	1	2
	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	000	000	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	010	010	020
1981	0	0	0	0	0	0	0	0	1	0	1	1	3
	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	000	000	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	010	000	100	100	210
1982	0	0	0	0	1	1	0	0	0	2	1	0	5
	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	100	010	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	020	100	000	230
1983	0	0	0	0	0	0	0	1	0	1	1	0	3
	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	000	000	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	010	000	010	010	000	030
1984	0	0	0	0	1	0	0	0	0	1	2	0	4
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	010	000	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	010	200	000	220
1985	0	0	0	0	2	0	0	0	0	2	1	1	6
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	020	000	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	020	010	010	060

1986	1	0	0	0	0	0	0	0	0	0	2	0	3
	$\begin{aligned} & 01 \\ & 0 \end{aligned}$	000	000	000	000	000	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	000	020	000	030
1987	0	1	0	0	0	2	0	0	0	2	1	2	8
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	010	000	000	000	020	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	020	010	020	080
1988	0	0	0	0	0	1	0	0	0	1	2	1	5
	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	000	000	010	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	010	110	010	140
1989	0	0	0	0	1	1	0	0	0	0	1	0	3
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	010	010	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	000	100	000	120
1990	0	0	0	1	1	0	0	0	0	0	1	1	4
	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	001	100	000	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	000	001	010	112
1991	1	0	0	1	0	1	0	0	0	0	1	0	4
	$\begin{aligned} & 01 \\ & 0 \end{aligned}$	000	000	100	000	010	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	100	000	220
1992	0	0	0	0	1	2	1	0	1	3	3	2	13
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	100	020	$\begin{aligned} & 01 \\ & 0 \end{aligned}$	000	001	021	210	020	382
1993	0	0	0	0	0	0	0	0	0	0	2	0	2
	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	000	000	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	000	200	000	200
1994	0	0	1	1	0	1	0	0	0	1	1	0	5

	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	010	100	000	010	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	010	010	000	140
1995	0	0	0	0	0	0	0	0	1	1	2	0	4
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	000	000	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	010	010	200	000	220
1996	0	0	0	0	1	3	0	0	0	2	2	0	8
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	010	120	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	110	200	000	440
1997	0	0	0	0	1	0	0	0	1	1	1	0	4
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	100	000	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	100	010	010	000	220
1998	0	0	0	0	2	1	0	0	1	1	2	1	8
	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	000	110	100	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	010	010	200	100	530
1999	0	1	0	0	1	1	0	0	0	2	0	0	5
	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	010	000	000	100	010	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	000	000	200	000	000	320
2000	0	0	0	0	0	0	0	0	0	2	1	1	4
	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	000	000	000	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	020	100	010	130
2001	0	0	0	0	1	0	0	0	1	1	1	0	4
	$\begin{array}{ll} 0 & 0 \\ 0 \end{array}$	000	000	000	100	000	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	010	010	001	000	121
2002	0	0	0	0	2	0	0	0	0	0	2	1	5
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	020	000	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	000	000	000	020	010	050

2003	0	0	0	0	1	0	0	0	0	0	1	1	3
	00 0	000	000	000	100	000	00 0	000	000	000	100	010	210
(1975-2003)													
MEAN	0.1	0.1	0	0.1	0.7	0.6	0	0	0.3	1	1.3	0.6	5
CASES	3	2	1	4	21	17	1	1	9	28	39	16	142

The criteria used in TABLE 1-6 are as follows:

1) If a tropical cyclone was first warned on during the last two days of a particular month and continued into the next month for longer than two days, then that system was attributed to the second month.
2) If a tropical cyclone was warned on prior to the last two days of a month, it was attributed to the first month, regardless of how long the system lasted.
3) If a tropical cyclone began on the last day of the month and ended on the first day of the next month, that system was attributed to the first month. However, if a tropical cyclone began on the last day of the month and continued into the next month for only two days, then it was attributed to the second month.

Table 1-6 Legend:

Total month/year
GTE 64 knots
(Typhoon)

35 to 63 knots (Tropical Storm)

LTE 34 knots
(Tropical Depression)

Tropical Storm (TS) 01W (Yan-Yan)

First Poor : 0600Z 11 Jan 03
First Fair : 2330Z 12 Jan 03
First TCFA : 1600Z Jan 03
First Warning : 1800Z 15 Jan 03
Last Warning : 0000Z Jan 03
Max Intensity : 50 kts, gusts to 65 kts
Landfall : None
Total Warnings : 22
Remarks:

1) The first Northwest Pacific Ocean significant tropical cyclone of 2003, Tropical Storm (TS) 01W, developed in the near-equatorial trough east of Tarawa Island. After an initial westward track at 5 to 7 knots, the cyclone accelerated northwestwards towards Guam at speeds of 15 to 21 knots and slowly intensified. The first warning was issued on 15 January at $1800 Z$ when the cyclone was located approximately 150 nm east of Pohnpei Island.

For approximately 72 hours after the initial warning, the cyclone continued on a west-northwestward course, with a track speed between 13 and 18 knots. Around 000Z on 18 January, 01W slowed in track as a mid-latitude cyclone over Japan weakened the subtropical ridge allowing the cyclone to sharply recurve to the northeast and attain a maximum intensity of 50 knots.

Around $0000 Z$ on 20 January, satellite data indicated that the low level circulation center was becoming decoupled from the convection. Subsequently, TS 01W quickly weakened over water due to strong vertical wind shear and cool sea surface temperatures and the final warning was issued at 1200Z, just 12 hours later.
2) No damage reports were received, with closest point of approach to Guam being 115 nm to the eastnortheast and 85 nm to the southeast of Saipan.
*Named by WMO designated RSMC

Statistics for JTWC on TS01W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03011106		1.9 N	179.8W	15																
03011112		1.9 N	179.6E	15																
03011118		1.9 N	179.0E	15																
03011200		1.8 N	178.5E	15																
03011206		1.6 N	178.0E	15																
03011212		1.3 N	177.6E	15																
03011218		1.6 N	177.2E	15																
03011300		1.9 N	176.8E	15																
03011306		2.4 N	176.2E	15																
03011312	1	3.1 N	175.1E	15	102								0							
03011318	2	4.1 N	173.4E	20	123								-5							
03011400	3	5.1 N	171.5E	25	61								0							
03011406	4	5.7 N	169.7E	25	69								0							
03011412	5	5.8N	168.2E	25	224								0							
03011418	6	5.6N	166.8E	25	204								0							
03011500	7	5.4N	165.6E	25	23								0							
03011506	8	6.0 N	164.1E	25	45								0							
03011512	9	6.7 N	162.5E	25	46								0							
03011518	10	7.3N	160.8E	30	8	8	24	43	88	221			0	5	10	10	15	10		
03011600	11	7.9N	159.2E	30	26	22	49	84	114	207			0	5	5	10	5	0		
03011606	12	8.5N	157.8E	30	21	12	31	48	69	211			5	0	0	5	0	- 10		
03011612	13	8.8N	156.3E	30	37	35	48	69	21				0	-5	-5	- 15	- 20			
03011618	14	9.4 N	154.7E	30	33	83	103	122	69	216			0	-5	-5	10	-	0		
03011700	15	10.0N	153.0E	35	5	27	59	25	123	197	206		0	5	0	0	0	15	15	
03011706	16	10.9 N	151.4E	35	18	25	41	55	183	430			0	0	-5	-	0	15		
03011712	17	11.7 N	149.9E	30	26	65	63	65	180	471	559		0	-5	-	-	0	10	0	
03011718	18	12.4 N	148.5E	35	5	19	61	168	266	411			0	10	- 15	-5	0	15		
03011800	19	13.2 N	147.4E	40	18	89	188	246	267	290			0	0	5	10	5	15		

03011806	20	13.7 N	146.7E	45	16	52	136	171	224	205		0	0	5	5	5	15		
03011812	21	14.1 N	146.8E	45	13	93	139	168	212	69		0	10	-5	10	10	5		
03011818	22	14.3 N	147.4E	50	8	17	55	112	127			-5	-5	-5	-5	-5			
03011900	23	14.5 N	148.2E	50	8	42	108	169	146			0	5	0	0	5			
03011906	24	14.8 N	149.0E	45	13	79	164	229	199			0	0	0	0	5			
03011912	25	15.4 N	149.9E	40	5	63	118	80	13			0	-5	-5	0	0			
03011918	26	16.1 N	150.9E	40	0	55	99	46				0	0	0	5				
03012000	27	16.7 N	152.0E	40	0	57	49	49				0	0	5	5				
03012006	28	17.2 N	153.4E	35	12	47	24					0	0	5					
03012012	29	17.6N	154.8E	35	28	25	62					-5	0	0					
03012018	30	18.0 N	155.9E	30	18	105						0	5						
03012100	31	18.2 N	156.3E	25	12	19						0	0						
03012106		18.4 N	156.6E	20															
03012112		18.5 N	156.9E	20															
			AVERAGE		40	47	81	108	144	266	383	1	3	5	7	6	10	8	
			BIAS									0	-1	-1	-1	-1	8	8	
			\# CASES		31	22	20	18	16	11	2	31	22	20	18	16	11	2	

Figure 1-01W-1. $182230 Z$ January 2003 GMS-5 color composite SSM/I imagery of TY 01W (Yanyan), located 120 nm east of the Guam, with an estimated intensity of 50 knots.

TROPICAL STORM 01W (YAN-YAN)
15-21 JANUARY 2003

Time Intensity for 01W

Intensity (kts)

Fix Date (Zulu)

Super Typhoon (STY) 02W (Kujira)

First Poor : $2100 Z 06$ Apr 03
First Fair : 1600Z 08 Apr 03
First TCFA : 2200Z 08 Apr 03
First Warning : 0000Z 09 Apr 03
Last Warning : 0600Z 22 Apr 03
Max Intensity : 135 kts, gusts to 165 kts
Landfall : Ushibuka, Japan
Total Warnings : 66
Remarks:

1) Super Typhoon (STY) 02W was initially detected as a broad area of convection on 06 April, 2003 south of Pohnpei and very close to the equator. Multiple convection centers were monitored in this region for almost 48 hours before significant development began. The initial warning was issued within 8 hours after JTWC designated the suspect area as having fair potential for development.

Although cross equatorial upper level outflow was noted for STY 02W from the first warning, the cyclone intensified slowly while the low level circulation center (LLCC) remained exposed to the east of the deep convection during this period. The cyclone tracked slowly northward until 0000Z on 11 April, an then began to move westward under the steering influence of the subtropical ridge north of the cyclone. Concurrently, the cyclone became more vertically stacked, and began to intensify at a higher rate.

By $1800 Z$ on 12 April, STY 02W was classified as a typhoon with a banding eye. Radial outflow was very pronounced at this time and a period of greater than climatological development (> 1 Dvorak Tnumber/day) ensued, with an increase of 2 Dvorak T-number in the 36 hour period between 0600 Z on 13 April and $1800 Z$ on 14 April.

After 1800 Z on 14 April, a shortwave trough moving east from China altered the steering flow allowing the cyclone to move more west-northwestward. The cyclone also attained maximum intensity of 135 knots during this period of nowrthest movement with concentric eyewall formation noted in microwave and infrared satellite data.

After 1200 Z on 16 April, STY 02W begun weaken in an apparent response to increasing vertical wind shear. After 1800 Z on 18 April, the cyclone began to reintensify after it turned more west and it reached a peak intensity of 125 knots between $0600 Z$ and $1200 Z$ on 18 April before weakening again.

The cyclone once again began to move more poleward and weaken as outflow became restricted in both the equatorward and poleward directions. A third reintensification which occurred after 0000 Z on 20 April was caused by temporarily improved poleward outflow, and produced a tertiary peak intensity of 100 knots. After 0000 Z on 21 April, the cyclone then began to rapidly weaken while moving poleward into a region of increased vertical wind shear.

By 0000Z on 22 April, track speed for STY 02W began to decrease, eventually causing the system to become quasistationary within a break in the subtropical ridge. 36 hour later the cyclone began to accelerate toward the northeast in an environment of strong vertical wind shear causing the LLCC to become fully exposed to the southwest of the rapidly moving upper level circulation. Extratropical transition occurred during this northeast movement and the final warning on STY 02W was issued on $0600 Z$ on 25 April.
2) Reports indicated two casualties on Pohnpei due to STY 02W. All other damage reports received indicated only minor damage to buildings and crops.
*Named by WMO designated RSMC

03040918	4	5.4 N	160.6E	35	8	60	48	63	85	143	150	108	5	10	15	20	15	10	20	-5
03041000	5	6.5 N	160.4E	40	18	819	32	53	77	128	127	113	0	5	10	15	5	10	5	15
03041006	6	7.5 N	159.7E	40	8	21	35	55	84	114	173	317	0	5	10	5	5	5	30	-65
03041012	7	8.1 N	159.0E	40	0	8	19	38	68	81	152	338	0	5	10	0	5	-5	40	-65
03041018	8	8.6 N	158.3E	40	21	135	51	83	96	103	189	306	0	5	0	0	-5	10	45	-45
03041100	9	9.1 N	157.6E	40	33	51	66	84	93	119	219	324	0	5	-5	5	5	15	35	-30
03041106	10	9.6 N	156.8E	40	5	6	18	25	18	6	82	164	0	-5	-5	-5	5	25	50	-65
03041112	11	10.0 N	156.0E	40	5	6	8	18	17	19	104	155	0	10	-5	-5	-5	35	50	-60
03041118	12	10.2N	155.2E	50		122	38	36	35	30	138	158	10	10	15	-5	0	30	35	-15
03041200	13	10.2 N	154.3E	55	8	22	30	22	19	65	158	135	0	5	5	5	0	20	25	0
03041206	14	10.2 N	153.4E	55	6	13	32	25	31	43	67	51	0	-5	5	5	10	20	30	-5
03041212	15	10.2N	152.5E	55	8	56	56	38	36	38			0	-5	-5	- 10	20	25		
03041218	16	10.1 N	151.6E	65	16	617	25	22	25	46	41	49	0	5	5	10	20	- 25	-5	5
03041300	17	10.1N	150.7E	65		118	8	21	24	18	47	48	0	-5	10	25	35	40	20	20
03041306	18	10.2N	149.8E	65	0	24	36	37	24	29	76	160	0	-5	20	35	35	30	-5	20
03041312	19	10.2N	149.0E	75	8	30	32	26	13	25	132	170	0	10	20	30	25	20	15	-15
03041318	20	10.3N	148.2E	75	8	8	6	6	6	35	163	159	0	20	30	30	30	-5	10	5
03041400	21	10.4N	147.3E	90	5	13	3	21	19	41	167	121	0	15	20	15	- 20	10	10	10
03041406	22	10.6 N	146.3E	100	0	0	6	13	12	60	138	138	0	15	10	10	10	15	0	20
03041412	23	10.7N	145.2E	110	8	8	18	30	8	59	146	155	0	0	5	0	5	25	0	25
03041418	24	11.1 N	143.9E	120	5	17	38	43	27	78			0	5	5	0	15	25		
03041500	25	11.4 N	142.5E	125	11	117	70	25	42	105	102	74	0	5	0	10	20	15	20	45
03041506	26	11.9N	141.1E	125	11	125	31	31	72	108	93	72	0	0	0	20	20	0	15	20
03041512	27	12.3 N	139.6E	125	5	19	25	46	69	104	69	67	0	-5	0	15	20	-5	20	10
03041518	28	12.6 N	138.3E	130	5	19	35	81	108	144			0	-5	15	15	20	0		
03041600	29	13.0N	137.0E	135	0	13	17	72	114	138	161	216	0	0	10	20	10	5	35	25

03041606	30	13.4 N	136.1E	135	0			45	73	115	121	130	222	0	15	15	20	0	15	10	10
03041612	31	13.8 N	135.2E	130	5		317	71	106	136	139	102	220	0	10	15	0	15	10	-5	-10
03041618	32	14.0 N	134.4E	115	5		48	80	107	139	125	138	288	0	0	0	25	45	25	45	-20
03041700	33	14.0 N	133.6E	115	0		365	57	81	105	94	89	222	10	0	$\overline{15}$	45	50	30	35	0
03041706	34	13.7 N	132.8E	110	11		45	59	69	72	70	96	120	-5	-5	35	45	40	40	30	5
03041712	35	13.6 N	132.0E	105	5		305	54	78	81	46			0	15	35	35	25	45		
03041718	36	13.5 N	131.2E	105	6		26	47	64	61	61	206	2760	0	30	30	30	25	45	30	5
03041800	37	13.5 N	130.6E	115	8		26	41	35	18	67	166	2180	0	20	20	15	20	45	10	15
03041806	38	13.5 N	130.0E	125	6		18	38	35	36	74	170	1950	0	5	10	10	-5	20	25	10
03041812	39	13.6 N	129.5E	125	6			31	13	27	74			0	10	15	10	20	20		
03041818	40	13.9 N	129.1E	120	0			17	17	35	62	144	1790	0	0	5	20	35	25	-5	-5
03041900	41	14.2 N	128.7E	115	8	6	- 1	18	34	70	96	143	214	0	5	0	30	40	-5	0	-10
03041906	42	14.7N	128.3E	105	0	0	1	17	38	54	87	123	331	0	0	20	35	40	-5	0	-5
03041912	43	15.2 N	127.8E	95	8		121	18	46	48	91	165	417	0	0	30	40	35	-5	-5	-10
03041918	44	15.7N	127.3E	90	5			21	32	62	80	178	5370	0	20	35	40	30	10	10	-15
03042000	45	16.2 N	126.6E	85		18		32	48	57	74	198	6770	0	25	35	30	10	0	10	-15
03042006	46	16.7 N	126.1E	95	0			21	64	69	98	229	8190	0	15	20	15	0	5	5	5
03042012	47	17.2N	125.6E	100	6		55	54	67	115	123	309	9910	0	-5	0	20	15	10	5	0
03042018	48	17.9 N	125.1E	100	5		26	6	13	36	51	298		0	5	15	25	15	10	0	
03042100	49	18.4 N	124.6E	100	6		31	26	64	50	91	463		0	5	25	25	20	10	0	
03042106	50	18.7 N	124.3E	95	0		41	43	62	54	152	723			10	25	15	20	5	5	
03042112	51	19.2 N	124.4E	85	11	16		38	17	30	182	835		0	20	15	15	10	0	0	
03042118	52	19.7N	124.0E	75	8		43	59	90	94	69			0	10	10	10	5	0		
03042200	53	19.9 N	123.5E	55	16		39	37	57	78	240			0	-5	-5	10		15		
03042206	54	20.3 N	123.2E	50	5	0	3	31	55	53	391			5	0	5	0	10	- 10		

03042212	55	20.7N	123.3E	45	0	53	95	88	79	239			10	10	5	0	-5	-5		
03042218	56	20.8N	122.9E	45	11	40	48	81	64				-5	0	-5	10	10			
03042300	57	20.8N	122.5E	35	5	29	51	142	355				0	-5	10	10	15			
03042306	58	20.9N	122.4E	35	13	38	73	246					0	-5	10	15				
03042312	59	21.1 N	122.4E	35	8	25	133	358					0	-5	10	15				
03042318	60	21.6N	122.5E	35	11	50	229	540					0	-5	10	10				
03042400	61	22.1 N	122.8E	35	0	58	189	404					0	5	0	0				
03042406	62	23.0 N	123.2E	35	5	89	231						0	0	0					
03042412	63	24.8 N	124.0E	35	0	34	139						0	0	10					
03042418	64	26.8N	125.4E	35	0	55							0	5						
03042500	65	29.0 N	127.3E	35	0	60							0	5						
03042506	66	32.1 N	130.1E	30	11								0							
03042512		34.2 N	134.0E	30																
			AVERAGE		8	28	50	73	64	96	184	250	1	7	12	16	17	16	17	19
			BIAS										0	-1	-3	-6	-7	-8	-7	-9
			\# CASES		66	65	63	61	57	55	45	41	66	65	63	61	57	55	45	41

Figure 1-02W-3. 150350Z April 2003 MODIS true-color image of TY 02W (Kujira), located 180nm southwest of Guam, with an intensity of 125 knots.

Figure 1-02W-1. $181049 Z$ April 2003 GMS-5 enhanced infrared imagery of TY 02W (Kujira), located 480 nm east of the Luzon, with an peak intensity of 125 knots.

SUPER TYPHOON 02W (KUJRA)

09-25 APRLL 2003

Time Intensity for 02W

Intensity (kts)

Fix Date (Zulu)

Super Typhoon (STY) 02W (Kujira)

\square
First Poor : 2100Z 06 Apr 03
First Fair : 1600Z 08 Apr 03
First TCFA : 2200Z 08 Apr 03
First Warning : 0000Z 09 Apr 03
Last Warning : 0600Z 22 Apr 03
Max Intensity : 135 kts, gusts to 165 kts
Landfall : Ushibuka, Japan
Total Warnings : 66
Remarks:

1) Super Typhoon (STY) 02W was initially detected as a broad area of convection on 06 April, 2003 south of Pohnpei and very close to the equator. Multiple convection centers were monitored in this region for almost 48 hours before significant development began. Subsequently, the initial warning was issued within 8 hours after JTWC designated the suspect area of having fair potential for development.

Although cross equatorial upper level outflow was noted for STY 02W from the first warning, the cyclone intensified slowly while the low level circulation center (LLCC) remained exposed to the east of the deep convection during this period. The cyclone tracked slowly northward until 0000 Z on 11 April, an then began to move westward under the steering influence of the subtropical ridge north of the cyclone. Concurrently, the cyclone became more vertically stacked, and began to intensify at a higher rate.

By 1800 Z on 12 April, STY 02W was classified as a typhoon with a banding eye. Radial outflow was very pronounced at this time and a period of greater than climatological development (> 1 Dvorak Tnumber/day) ensued, with an increase of 2 Dvorak T-number in the 36 hour period between $0600 Z$ on 13 April and 1800 Z on 14 April.

After 1800 Z on 14 April, a shortwave trough moving east from China altered the steering flow allowing the cyclone to move more west-northwestward. The cyclone also attained maximum intensity of 135 knots during this period of nowrthest movement with concentric eyewall formation noted in microwave and infrared satellite data.

After 1200 Z on 16 April, STY 02W begun weaken in an apparent response to increasing vertical wind shear. After $1800 Z$ on 18 April, the cyclone began to reintensify after it turned more west and it reached a peak intensity of 125 knots between $0600 Z$ and $1200 Z$ on 18 April before weakening again.

Subsequently, the cyclone once again began to move more poleward and weaken as outflow became restricted in both the equatorward and poleward directions. A third reintensification which occurred after $0000 Z$ on 20 April was caused by temporarily improved poleward outflow, and produced a tertiary peak intensity of 100 knots. After $0000 Z$ on 21 April, the cyclone then began to rapidly weaken while moving poleward into a region of increased vertical wind shear.

By 0000Z on 22 April, track speed for STY 02W began to decrease, eventually causing the system to become quasistationary within a break in the subtropical ridge. 36 hour later the cyclone began to accelerate toward the northeast in an environment of strong vertical wind shear causing the LLCC to remain fully exposed to the southwest of the rapidly moving upper level circulation. Extratropical transition occurred during this northeast movement and the final warning on STY 02W was issued on $0600 Z$ on 25 April.
2) Reports indicated two casualties on Pohnpei due to STY 02W. All other damage reports received indicated only minor damage to buildings and crops.
*Named by WMO designated RSMC

Statistics for JTWC on STY02W																				
	WRN	BEST	TRACK			SIT	TION	ERR	RORS					ND	RR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03040806		2.6 N	158.8E	15																
03040812		3.0 N	159.5E	25																
03040818		3.4 N	160.0E	25																
03040900	1	3.7 N	160.2E	30	48	99	135	137	102	122			0	0	0	5	15	10		
03040906	2	4.1 N	160.4E	35	23	48	63	51	55	126	260	354	0	5	5	10	20	15	20	5
03040912	3	4.6 N	160.6E	35	5	35	42	36	54	136	222	390	0	0	5	10	20	15	0	-30
03040918	4	5.4 N	160.6E	35	8	60	48	63	85	143	150	108	5	10	15	20	15	10	20	-5
03041000	5	6.5 N	160.4E	40	18	19	32	53	77	128	127	113	0	5	10	15	5	10	5	-15

03041006	6	7.5N	159.7E	40	8	21	35	55	84	114	173	317	0	5	10	5	5	5	$\overline{30}$	-65
03041012	7	8.1 N	159.0E	40	0	8	19	38	68	81	152	338	0	5	10	0	5	-5	40	-65
03041018	8	8.6N	158.3E	40	21	35	51	83	96	103	189	306	0	5	0	0	-5	10	45	-45
03041100	9	9.1 N	157.6E	40	33	51	66	84	93	119	219	324	0	5	-5	5	5	15	35	-30
03041106	10	9.6 N	156.8E	40	5	6	18	25	18	6	82	164	0	-5	-5	-5	5	25	50	-65
03041112	11	10.0 N	156.0E	40	5	6	8	18	17	19	104	155	0	10	-5	-5	-5	35	50	-60
03041118	12	10.2 N	155.2E	50	11	22	38	36	35	30	138	158	10	10	15	-5	0	30	35	-15
03041200	13	10.2 N	154.3E	55	8	22	30	22	19	65	158	135	0	5	5	5	0	20	25	0
03041206	14	10.2 N	153.4E	55	6	13	22	25	31	43	67	51	0	-5	5	5	10	20	30	-5
03041212	15	10.2 N	152.5E	55	8	56	56	38	36	38			0	-5	-5	10	20	25		
03041218	16	10.1 N	151.6E	65	16	17	25	22	25	46	41	49	0	5	5	10	20	25	-5	5
03041300	17	10.1 N	150.7E	65	11	8	8	21	24	18	47	48	0	-5	10	25	35	40	20	-20
03041306	18	10.2 N	149.8E	65	0	24	36	37	24	29	76	160	0	-5	20	35	35	30	-5	-20
03041312	19	10.2 N	149.0E	75	8	30	32	26	13	25	132	170	0	10	20	30	25	20	15	-15
03041318	20	10.3 N	148.2E	75	8	8	6	6	6	35	163	159	0	20	30	30	30	-5	10	-15
03041400	21	10.4 N	147.3E	90	5	13	0	21	19	41	167	121	0	15	20	15	20	10	10	10
03041406	22	10.6N	146.3E	100	0	0	6	13	12	60	138	138	0	15	10	10	10	15	0	20
03041412	23	10.7 N	145.2E	110	8	8	18	30	8	59	146	155	0	0	5	0	5	25	0	25
03041418	24	11.1 N	143.9E	120	5	17	38	43	27	78			0	5	5	0	15	25		
03041500	25	11.4 N	142.5E	125	11	17	40	25	42	105	102	74	0	5	0	10	20	15	20	45
03041506	26	11.9 N	141.1E	125	11	25	31	31	72	108	93	72	0	0	0	20	20	0	15	20
03041512	27	12.3 N	139.6E	125	5	19	25	46	69	104	69	67	0	-5	0	15	20	-5	20	10
03041518	28	12.6 N	138.3E	130	5	19	35	81	108	144			0	-5	15	15	20	0		
03041600	29	13.0 N	137.0E	135	0	13	17	72	114	138	161	216	0	0	10	20	10	5	35	25
03041606	30	13.4 N	136.1E	135	0	12	45	73	115	121	130	222	0	15	15	20	0	15	10	-10
03041612	31	13.8 N	135.2E	130	5	31	71	106	136	139	102	220	0	10	15	0	15	10	-5	-10

03041618	32	14.0 N	134.4E	115	5		48	80	107	139	125	138	288	0	0	0	25	45	25	45	-20
03041700	33	14.0N	133.6E	115	0		36	57	81	105	94	89	222	10	0	15	45	50	30	35	0
03041706	34	13.7N	132.8E	110	11		24	59	69	72	70	96	120	-5	-5	35	45	40	40	30	5
03041712	35	13.6N	132.0E	105	5		30	54	78	81	46			0	15	35	35	25	45		
03041718	36	13.5N	131.2E	105	6		26	47	64	61	61	206	276	0	30	30	30	25	45	30	5
03041800	37	13.5N	130.6E	115	8		26	41	35	18	67	166	218	0	20	20	15	20	45	10	15
03041806	38	13.5N	130.0E	125	6		8	38	35	36	74	170	195	0	5	10	10	-5	20	25	10
03041812	39	13.6N	129.5E	125	6		24	31	13	27	74			0	10	15	10	20	20		
03041818	40	13.9 N	129.1E	120	0		8	17	17	35	62	144	179	0	0	5	20	35	25	-5	-5
03041900	41	14.2N	128.7E	115	8	6		18	34	70	96	143	214	0	5	0	30	40	-5	0	-10
03041906	42	14.7N	128.3E	105	0	0		17	38	54	87	123	331	0	0	20	35	40	-5	0	-5
03041912	43	15.2N	127.8E	95	8		12	18	46	48	91	165	417	0	0	30	40	35	-5	-5	-10
03041918	44	15.7N	127.3E	90	5		3	21	32	62	80	178	537	0	20	35	40	30	10	10	-15
03042000	45	16.2N	126.6E	85	11	8	8	32	48	57	74	198	677	0	25	35	30	10	0	10	-15
03042006	46	16.7N	126.1E	95	0		7	21	64	69	98	229	819	0	15	20	15	0	5	5	5
03042012	47	17.2N	125.6E	100	6		25	54	67	115	123	309	991	0	-5	0	20	15	10	5	0
03042018	48	17.9N	125.1E	100	5		26	6	13	36	51	298		0	5	15	25	15	10	0	
03042100	49	18.4N	124.6E	100	6		31	26	64	50	91	463		0	5	25	25	20	10	0	
03042106	50	18.7 N	124.3E	95	0		41	43	62	54	152	723			10	25	15	20	5	5	
03042112	51	19.2N	124.4E	85	11	6		38	17	30	182	835		0	20	15	15	10	0	0	
03042118	52	19.7N	124.0E	75	8		43	59	90	94	69			0	10	10	10	5	0		
03042200	53	19.9N	123.5E	55	16		39	37	57	78	240			0	-5	-5	10	10	15		
03042206	54	20.3N	123.2E	50	5	0		31	55	53	391			5	0	5	0	10	10		
03042212	55	20.7 N	123.3E	45	0		53	95	88	79	239			10	10	5	0	-5	-5		
03042218	56	20.8 N	122.9E	45	11		40	48	81	64				-5	0	-5	- 10	10			
03042300	57	20.8N	122.5E	35	5		29	51	142	355				0	-5	- 10	- 10	- 15			

03042306	58	20.9 N	122.4 E	35	13	38	73	246					0	-5	-	-				
03042312	59	21.1 N	122.4 E	35	8	25	133	358					0	-5	-	-	-			

Figure 1-02W-3. 150350Z April 2003 MODIS true-color image of TY 02W (Kujira), located 180 nm southwest of Guam, with an intensity of 125 knots.

Figure 1-02W-1. $181049 Z$ April 2003 GMS-5 enhanced infrared imagery of TY 02W (Kujira), located 480 nm east of the Luzon, with an peak intensity of 125 knots.

SUPER TYPHOON 02W (KUJRA)

09-25 APRL 2003

Time Intensity for 02W

Intensity (kts)

Fix Date (Zulu)

Tropical Depression (TD) 03W

First Poor : 1730Z 16 May 03

First Fair : 0600Z 17 May 03

First TCFA : $1400 Z 17$ May 03

First Warning : 1800Z 17 May 03

Last Warning : 0600Z 20 May 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : NONE

Total Warnings : 11
Remarks:

1) Tropical Depression (TD) 03W was initially classified as a tropical disturbance in the Philippine Sea on 16 May, 2003. The first warning was issued at $1800 Z$ on 17 May and the final warning was issued less than 72 hours later at $0600 Z$ on 20 May. The cyclone was classified as a tropical storm in forecasts issued by JTWC but post analysis of satellite data indicates that this cyclone did not attain tropical storm intensity.

The cyclone initially meandered in the Philippine Sea then tracked generally poleward. The cyclone only attained a 30 knot intensity for approximately 48 hours before dissipating as a significant tropical cyclone due to marginal upper level synoptic flow patterns.
2) No reports of damage associated with this system were received.

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03051700		7.3 N	130.7E	25																
03051706		7.5 N	130.7E	25																
03051712		7.7 N	130.6E	25																
03051718	1	7.8 N	130.4E	25	151	188	239	308	321				0	5	0	-5	-5			
03051800	2	7.8 N	130.2E	25	130	146	226	266	259				0	0	5	10	20			
03051806	3	7.9 N	130.0E	30	13	38	93	122	179				0	5	10	15	25			
03051812	4	8.1 N	130.0E	30	0	42	62	72	129				0	5	10	15	25			
03051818	5	8.6 N	130.4E	30	23	60	60	84					0	5	10	20				
03051900	6	9.1 N	130.9E	30	5	21	12	60					5	10	15	25				
03051906	7	9.6 N	131.2E	30	24	41	51						5	10	20					
03051912	8	10.2 N	131.3E	30	82	118	137						0	5	15					
03051918	9	10.8 N	131.1E	30	6	51							0	10						
03052000	10	11.6 N	131.0E	30	13	27							0	5						
03052006	11	12.6 N	130.8E	25	11								0							
03052012		13.5 N	130.4E	25																
			AVERAGE		42	73	110	152	222				1	6	11	15	19			
			BIAS											6	11	13	16			
			\# CASES		11	10	8	6	4				11		8	6	4			

Figure 1-03W-1. $182331 Z$ May 2003 GMS-5 visible image of TY 03W, located 290 nm east of the Davao, Philippines. The partially exposed low level circulation to the east of the deep convection had an estimated intensity of 35 knots.

TROPICAL DEPRESSION 03W
17-20 MAY 2003

Intensity (kts)

[^0]Fix Date (Zulu)

Tropical Depression (TD) 03W

First Poor : 1730Z 16 May 03
First Fair : 0600Z 17 May 03

First TCFA : 1400Z 17 May 03
First Warning : 1800Z 17 May 03

Last Warning : 0600Z 20 May 03, Dissipated
Max Intensity : 35 kts , gusts to 45 kts
Landfall : NONE
Total Warnings : 11
Remarks:

1) Tropical Depression (TD) 03W was initially classified as a tropical disturbance in the Philippine Sea on 16 May, 2003. The first warning was issued at $1800 Z$ on 17 May and the final warning was issued less than 72 hours later at 0600Z on 20 May. The cyclone was classified as a tropical storm in forecasts issued by JTWC but post analysis of satellite data indicates that this cyclone did not attain tropical storm intensity.

The cyclone initially meandered in the Philippine Sea then tracked generally poleward. The cyclone only attained a 30 knot intensity for approximately 48 hours before dissipating as a significant tropical cyclone due to marginal upper level synoptic flow patterns.
2) No reports of damage associated with this system were received.

Statistics for JTWC on TD03W																				
	WRN	BEST	TRACK		POS	SITIO	N ER	RROR						IND	ERR	ROR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03051700		7.3 N	130.7E	25																
03051706		7.5N	130.7E	25																
03051712		7.7 N	130.6E	25																
03051718	1	7.8N	130.4E	25	151	188	239	308	321				0	5	0	-5	-5			
03051800	2	7.8 N	130.2E	25	130	146	226	266	259				0	0	5	10	20			
03051806	3	7.9 N	130.0E	30	13	38	93	122	179				0	5	10	15	25			
03051812	4	8.1 N	130.0E	30	0	42	62	72	129				0	5	10	15	25			
03051818	5	8.6 N	130.4E	30	23	60	60	84					0	5	10	20				
03051900	6	9.1 N	130.9E	30	5	21	12	60					5	10	15	25				
03051906	7	9.6 N	131.2E	30	24	41	51						5	10	20					
03051912	8	10.2 N	131.3E	30	82	118	137						0	5	15					
03051918	9	10.8 N	131.1E	30	6	51							0	10						
03052000	10	11.6 N	131.0E	30	13	27							0	5						
03052006	11	12.6 N	130.8E	25	11								0							
03052012		13.5 N	130.4E	25																
			AVERAGE		42	73	110	152	222				1	6	11	15	19			
			BIAS										1	6	11	13	16			
			\# CASES		11	10	8	6	4				11	10	8	6	4			

Figure 1-03W-1. $182331 Z$ May 2003 GMS-5 visible image of TY 03W, located 290 nm east of the Davao, Philippines. The partially exposed low level circulation to the east of the deep convection had an estimated intensity of 35 knots.

TROPICAL DEPRESSION 03W

17-20 MAY 2003

Time Intensity for 03W
Intensity (kts)

Fix Date (Zulu)

Typhoon (TY) 04W (Chan-Hom)*

First Poor : 0600Z 18 May 03
First Fair : 1000Z 18May 03
First TCFA : $1500 Z$ 18May 03
First Warning : 0000Z 19 May 03
Last Warning : 0000Z 27 May 03
Max Intensity : 115 kts, gusts to 140 kts
Landfall : NONE
Total Warnings : 33
Remarks:

1) Typhoon (TY) 04W was initially detected as persistent deep convection over a broad low level circulation center (LLCC) and reached warning criteria within 18 hours, at 0000Z on 19 May. An Air Force weather reconnaissance flight was flown into this cyclone just after the first warning was issued while the cyclone was still broad and difficult to locate with satellite fixes. This flight provided center fix and wind information with 40 knot winds near the center on a 30 second average.

TY 04W tracked poleward towards a weakness in the low to mid-level steering ridge by a migratory shortwave trough. Intensification for this cyclone was very close to one Dvorak T-number/day from the initial warning until approximately 1800 Z on 23 May, when TY 04W reached maximum intensity. Maximum intensity was maintained for 30 hours as the system passed the ridge axis moved more northnortheastward while accelerating.

After 0000Z on 25 May, TY 04W began to decrease in intensity rapidly as it increased track speed towards a shortwave trough to the northeast. Dry air entrainment was noted by 0600 Z on 26 May in microwave satellite imagery as the cyclone began extratropical transition. TY 04W completed extratropical transition by 0000 Z on 27 May , at which time a final warning was issued.
2) FEMA damage assessments indicated Chuuk sustained some damage to homes and food crops due to heavy rain as TY 04W passed near the island. Storm intensity was approximately 35 to 45 knots, with Chuuk experiencing winds of 35 to 38 knots as the system moved northwest of the island.

Statistics for JTWC on TY04W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03051800		4.0 N	147.9E	15																
03051806		4.6 N	148.2E	15																
03051812		5.2 N	148.6E	20																
03051818		5.8 N	149.0E	20																
03051900	1	6.3 N	149.3E	25	26	88	147	132	112	160	197	290	0	-5	5	5	0	0	30	50
03051906	2	6.7 N	149.8E	35	8	49	27	30	27	128	231	313	0	10	20	5	15	15	-5	20
03051912	3	6.8 N	150.4E	35	26	38	6	13	58	179	251	394	0	10	10	5	15	10	20	25
03051918	4	6.9 N	150.8E	35	66	61	66	104	160	257	338	516	0	10	0	10	15	25	- 40	25
03052000	5	7.3N	151.0E	35	0	8	19	86	132	249	336	512	0	5	5	15	15	5	35	25
03052006	6	7.7N	150.8E	35	18	18	19	80	118	185	282	495	0	10	0	5	10	15	- 40	0
03052012	7	8.0 N	150.6E	45	5	0	69	119	164	242	322	573	10	10	20	25	35	10	0	10
03052018	8	8.4 N	150.4E	55	26	71	133	179	218	288	474	765	0	10	20	30	50	10	0	60
03052100	9	8.8 N	150.3E	55	11	93	143	182	212	299	520	794	0	15	25	45	35	10	5	60
03052106	10	9.4 N	150.6E	55	21	76	110	144	166	287	516	816	0	10	25	40	20	0	25	60
03052112	11	10.3 N	150.9E	55	23	30	54	84	141	247	489	722	0	0	15	10	10	10	15	50
03052118	12	11.1 N	151.0E	60	5	18	37	64	126	260	453	729	0	10	20	10	-5	$\overline{10}$	45	60
03052200	13	11.8 N	151.1E	65	5	35	65	114	163	289	486	830	0	10	5	0	0	10	50	60
03052206	14	12.6N	151.2E	65	8	21	55	98	133	249	523	931	0	10	10	20	15	10	35	30
03052212	15	13.3 N	151.3E	65	8	21	64	103	148	298	462		0	10	20	25	- 20	0	20	

03052218	16	14.2 N	151.3E	65	0	17	46	64	129	239	411		5	$\overline{-}$	45	40	30	20	40	
03052300	17	14.9 N	151.2E	85	0	48	57	79	144	273			0	15	15	15	25	20		
03052306	18	15.6 N	151.2E	95	0	44	74	112	172	244			0	-5	5	-5	10	35		
03052312	19	16.4 N	151.4E	105	0	13	46	111	174	296			0	0	0	-5	10	30		
03052318	20	17.3 N	151.5E	115	8	27	50	57	69	197			0	10	5	10	20	15		
03052400	21	18.2 N	151.6E	115	0	21	65	85	127	283			0	10	15	10	-5	15		
03052406	22	19.1 N	152.1E	115	17	53	49	79	166				0	$\overline{15}$	-5	5	0			
03052412	23	20.0 N	152.6E	115	8	39	44	60	188				0	15	-5	5	0			
03052418	24	21.0 N	153.8E	115	6	20	32	16	44				0	5	15	10	10			
03052500	25	22.4 N	154.7E	115	5	16	41	27	46				0	0	10	5	10			
03052506	26	23.8 N	155.6E	90	13	32	21	78	57				0	10	10	10	0			
03052512	27	25.2 N	156.6E	90	0	27	66	91					0	5	0	10				
03052518	28	26.8 N	157.5E	65	8	25	78	47					0	-5	10	10				
03052600	29	28.3 N	158.6E	65	5	53	90						0	0	10					
03052606	30	29.7 N	160.4E	55	7	5	121						0	5	5					
03052612	31	31.0 N	162.3E	55	31	134							0	5						
03052618	32	32.4 N	164.5E	45	28	209							0	-5						
03052700	33	33.9 N	166.9E	45	11								0							
03052706		36.1 N	170.9E	45																
			AVERAGE		13	44	63	87	131	245	393	620	0	9	12	14	15	13	25	38
			BIAS										0	1	4	5	7	9	4	18
			\# CASES		33	32	30	28	26	21	16	14	33	32	30	28	26	21	16	14

Figure 1-04W-1. 230315Z May 2003 MODIS true-color image of TY 04W (Chan-Hom), located 390 nm east-northeast of Guam, with an intensity of 85 knots.

Figure 1-04W-2. $241519 Z$ May 200385 GHz TRMM image of TY 04W (Chan-hom), the eye was located 560 nm northeast of the Saipan, with a peak intensity of 115 knots.

TYPHOON 04W (CHAN-HOM)
 18-27 MAY 2003

Intensity (kts)

- KGWC
- PGTW
- KWBC
- T-Numbers
- Best Track

Fix Date (Zulu)

Typhoon (TY) 04W (Chan-Hom)*

First Poor : 0600Z 18 May 03

First Fair : 1000Z 18May 03
First TCFA : 1500Z 18May 03
First Warning : 0000Z 19 May 03
Last Warning : 0000Z 27 May 03
Max Intensity : 115 kts, gusts to 140 kts
Landfall : NONE

Total Warnings : 33
Remarks:

1) Typhoon (TY) 04W was initially detected as persistent deep convection over a broad low level circulation center (LLCC) and reached warning criteria within 18 hours, at 0000Z on 19 May. An Air Force weather reconnaissance flight was flown into this cyclone just after the first warning was issued while the cyclone was still broad and difficult to locate with satellite fixes. This flight provided center fix and wind information with 40 knot winds near the center on a 30 second average.

TY 04W tracked provided poleward towards a weakness in the low to mid-level steering ridge by a migratory shortwave trough. Intensification for this cyclone was very close to one Dvorak T-number/day from the initial warning until approximately $1800 Z$ on 23 May, when TY 04W reached maximum intensity. Subsequently, maximum intensity was maintained for 30 hours as the system passed the ridge axis moved more north-northeastward while accelerating.

After 0000Z on 25 May, TY 04W began to decrease in intensity rapidly as it increased track speed towards a shortwave trough to the northeast. Dry air entrainment was noted by 0600Z on 26 May in microwave satellite imagery as the cyclone began extratropical transition. TY 04W completed extratropical transition by 0000 Z on 27 May, at which time a final warning was issued.
2) FEMA damage assessments indicated Chuuk sustained some damage to homes and food crops due to heavy rain as TY 04W passed near the island. Storm intensity was approximately 35 to 45 knots, with Chuuk experiencing winds of 35 to 38 knots as the system moved northwest of the island.
*Named by WMO designated RSMC

Statistics for JTWC on TY04W																				
	WRN	BEST	TRACK			OSIT	ON	RRO	RS					ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03051800		4.0 N	147.9E	15																
03051806		4.6 N	148.2E	15																
03051812		5.2 N	148.6E	20																
03051818		5.8 N	149.0E	20																
03051900	1	6.3 N	149.3E	25	26	88	147	132	112	160	197	290	0	-5	5	5	0	0	- 30	-50
03051906	2	6.7 N	149.8E	35	8	49	27	30	27	128	231	313	0	10	20	5	15	15	-5	-20
03051912	3	6.8 N	150.4E	35	26	38	6	13	58	179	251	394	0	10	10	5	15	10	20	-25
03051918	4	6.9 N	150.8E	35	66	61	66	104	160	257	338	516	0	10	0	10	15	25	- 40	-25
03052000	5	7.3N	151.0E	35	0	8	19	86	132	249	336	512	0	5	5	15	15	5	35	-25
03052006	6	7.7N	150.8E	35	18	18	19	80	118	185	282	495	0	10	0	5	10	15	40	0
03052012	7	8.0 N	150.6E	45	5	0	69	119	164	242	322	573	10	10	20	25	35	10	0	10
03052018	8	8.4 N	150.4E	55	26	71	133	179	218	288	474	765	0	10	20	30	50	10	0	60
03052100	9	8.8 N	150.3E	55	11	93	143	182	212	299	520	794	0	15	25	45	35	10	5	60
03052106	10	9.4 N	150.6E	55	21	76	110	144	166	287	516	816	0	10	25	40	20	0	25	60
03052112	11	10.3 N	150.9E	55	23	30	54	84	141	247	489	722	0	0	15	10	10	10	15	50
03052118	12	11.1 N	151.0E	60	5	18	37	64	126	260	453	729	0	10	20	10	-5	10	45	60
03052200	13	11.8 N	151.1E	65	5	35	65	114	163	289	486	830	0	10	5	0	0	10	50	60
03052206	14	12.6 N	151.2E	65	8	21	55	98	133	249	523	931	0	10	10	20	15	10	35	30
03052212	15	13.3 N	151.3E	65	8	21	64	103	148	298	462		0	10	20	25	20	0	20	
03052218	16	14.2 N	151.3E	65	0	17	46	64	129	239	411		5	30	45	40	30	20	40	
03052300	17	14.9 N	151.2E	85	0	48	57	79	144	273			0	15	15	15	25	20		
03052306	18	15.6N	151.2E	95	0	44	74	112	172	244			0	-5	5	-5	10	35		
03052312	19	16.4 N	151.4E	105	0	13	46	111	174	296			0	0	0	-5	10	30		

03052318	20	17.3N	151.5E	115	8	27	50	57	69	197			0	10	5	10	20	15		
03052400	21	18.2N	151.6E	115	0	21	65	85	127	283			0	10	15	10	-5	15		
03052406	22	19.1 N	152.1E	115	17	53	49	79	166				0	15	-5	5	0			
03052412	23	20.0 N	152.6E	115	8	39	44	60	188				0	15	-5	5	0			
03052418	24	21.0N	153.8E	115	6	20	32	16	44				0	5	15	10	10			
03052500	25	22.4 N	154.7E	115	5	16	41	27	46				0	0	10	5	10			
03052506	26	23.8 N	155.6E	90	13	32	21	78	57				0	10	10	10	0			
03052512	27	25.2 N	156.6E	90	0	27	66	91					0	5	0	10				
03052518	28	26.8 N	157.5E	65	8	25	78	47					0	-5	10	10				
03052600	29	28.3 N	158.6E	65	5	53	90						0	0	10					
03052606	30	29.7N	160.4E	55	7	5	121						0	5	5					
03052612	31	31.0 N	162.3E	55	31	134							0	5						
03052618	32	32.4 N	164.5E	45	28	209							0	-5						
03052700	33	33.9 N	166.9E	45	11								0							
03052706		36.1 N	170.9E	45																
			AVERAGE		13	44	63	87	131	245	393	620	0	9	12	14	15	13	25	38
			BIAS										0	1	4	5	7	9	4	18
			\# CASES		33	32	30	28	26	21	16	14	33	32	30	28	26	21	16	14

Figure 1-04W-1. $230315 Z$ May 2003 MODIS true-color image of TY 04W (Chan-Hom), located 390nm east-northeast of Guam, with an intensity of 85 knots.

Figure 1-04W-2. $241519 Z$ May 200385 GHz TRMM image of TY 04W (Chan-hom), the eye was located 560 nm northeast of the Saipan, with a peak intensity of 115 knots.

TYPHOON 04W (CHAN-HOM)
18-27 MAY 2003

Time Intensity for 04W

Intensity (kts)

Tropical Storm (TS) 05W (Linfa)*

First Poor : 1900Z 23 May 03
First Fair : 0600Z 24 May 03
First TCFA : 1900Z 24 May 03
First Warning : 0000Z 25 May 03
Last Warning : 1800Z 30 May 03
Max Intensity : 60 kts, gusts to 75 kts
Landfall : Near Dagupan, Philippines
Total Warnings : 24
Remarks:

1) Tropical Storm (TS) 05W formed west of Luzon, Philippines and intensified slowly as it looped counter-clockwise in the South China Sea. Subsequently, the cyclone began to move east, toward Luzon island, in response to westerly steering flow.

The cyclone made landfall near Dagupan, Philippines, weakened due to land effects and then moved east into the Philippine Sea. After moving back over water, the cyclone began to move north-northeast with most of the heavy convection stripped from the cyclone. Subsequently, the cyclone began to slowly intensify reaching maximum intensity of 55 knots as it tracked north, along the eastern periphery of the Ryuku Islands.

Of note, one U. S. Air Force weather reconnaissance mission with a WC-130 aircraft was flown into this cyclone and an aircraft fix was made at $0446 Z$ on 30 May 2003. Data from this mission supported available radar and satellite data for the same period.

After 0000 Z on the 30th, extratropical influences began to affect this cyclone and transition for an extratropical cyclone occurred shortly after $1800 Z$ on 30 May in the Bungo Strait region between Kyushu and Shikoku.
2) No damage reports were received associated with this system.
*Named by WMO designated RSMC

Statistics for JTWC on TS 05W

	WRN BEST TRACK				POSITION ERRORS								WIND ERRORS						
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	729	120
03052406		15.5N	118.7E	20															
03052412		16.0N	118.8E	20															
03052418		16.3 N	118.8E	20															
03052500	1	16.5 N	118.6E	25	0	29	57	30	29	187			0	0	10	0	-5	10	
03052506	2	16.5N	118.3E	30	8	18	6	19	62	185			0	-5	5	0	0	10	
03052512	3	16.4 N	118.1E	30	8	8	12	24	24	187			0	-5	0	10	10		
03052518	4	16.1 N	118.1E	45	18	6	8	25	71	181	238	420	0	5	10	10	-5	10	-10
03052600	5	16.0N	118.4E	45	13	31	50	107	179	292	251		0	10	10	25	0	$10-$	
03052606	6	16.1 N	118.7E	45	11	26	70	145	200	346	619		0	0	20	5	-5	25	
03052612	7	16.1 N	119.0E	45	8	6	58	119	194	268	482		0	0	-5	-5	5	0	
03052618	8	16.1 N	119.4E	55	0	34	91	141	210	316	566		0	0	0	5	20	1030	
03052700	9	16.1 N	119.8E	55	0	59	97	172	244	345			0	10	10	25	35	30	
03052706	10	16.1 N	120.8E	45	17	48	98	178	235	368			0	0	10	20	25	20	
03052712	11	16.3 N	121.8E	35	8	37	131	206	251	405			0	10	15	20	20	20	
03052800	12	17.4 N	123.7E	30	62	142	209	230	281				-5	0	0	0	0		
03052806	13	18.8 N	124.0E	30	85	122	156	160	169				-5	0	0	- 10	0		
03052812	14	19.7N	125.0E	30	101	175	203	234	266				-5	-5	10	- 15	15		
03052818	15	20.8 N	125.6E	30	161	167	187	254	331				-5	0	- 15	-	15		
03052900	16	21.8 N	126.3E	35	40	73	80	21					10	10	15	25			
03052906	17	22.6 N	127.2E	35	12	57	51	19					0	10	10	5			

| 03052912 | 18 | 23.4 N | 128.1 E | 45 | 18 | 36 | 22 | | | | | | | | -5 | - | - | | | |
| :--- |

Figure 1-05W-1. $270016 Z$ May 2003 multi-sensor satellite images of TY 05W (Linfa), located along the west coast of Luzon, with a peak intensity of 55 knots.

TROPICAL STORM 05W (LINFA)

 25-30 MAY 2003

Time Intensity for 05W

Intensity (kts)

[^1]
Tropical Storm (TS) 05W (Linfa)

First Poor : 1900Z 23 May 03
First Fair : 0600Z 24 May 03
First TCFA : 1900Z 24 May 03
First Warning : 0000Z 25 May 03
Last Warning : 1800Z 30 May 03
Max Intensity : 60 kts, gusts to 75 kts
Landfall : Near Dagupan, Philippines
Total Warnings : 24
Remarks:

1) Tropical Storm (TS) 05W formed west of Luzon, Philippines and intensified slowly as it looped counter-clockwise in the South China Sea. Subsequently, the cyclone began to move east, toward Luzon island, in apparent response to westerly steering flow.

The cyclone made landfall near Dagupan, Philippines, weakened due to land effects and then moved east into the Philippine Sea. After moving back over water, the cyclone began to move north-northeast with most of the heavy convection stripped from the cyclone. Subsequently, the cyclone began to slowly intensify reaching maximum intensity of 55 knots as it tracked north, along the eastern periphery of the Ryuku Islands.

Of note, one U. S. Air Force weather reconnaissance mission with a WC-130 aircraft was flown into this cyclone and an aircraft fix was made at $0446 Z$ on 30 May 2003. Data from this mission supported available radar and satellite data for the same period.

After 0000 Z on the 30th, extratropical influences began to affect this cyclone and transition for an extratropical cyclone occurred shortly after 1800Z on 30 May in the Bungo Strait region between Kyushu and Shikoku.
2) No damage reports were received associated with this system.

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03052406		15.5 N	118.7E	20																
03052412		16.0N	118.8E	20																
03052418		16.3 N	118.8E	20																
03052500	1	16.5 N	118.6E	25	0	29	57	30	29	187			0	0	10	0	-5	10		
03052506	2	16.5 N	118.3E	30	8	18	6	19	62	185			0	-5	5	0	0	10		
03052512	3	16.4 N	118.1E	30	8	8	12	24	24	187			0	-5	0	10	- 10	5		
03052518	4	16.1 N	118.1E	45	18	6	8	25	71	181	238	420	0	5	10	10	-5	10	25	-10
03052600	5	16.0N	118.4E	45	13	31	50	107	179	292	251		0	10	10	25	0	10	25	
03052606	6	16.1 N	118.7E	45	11	26	70	145	200	346	619		0	0	20	5	-5	0	25	
03052612	7	16.1 N	119.0E	45	8	6	58	119	194	268	482		0	0	-5	-5	5	0	0	
03052618	8	16.1 N	119.4E	55	0	34	91	141	210	316	566		0	0	0	5	20	10	30	
03052700	9	16.1 N	119.8E	55	0	59	97	172	244	345			0	10	10	25	35	30		
03052706	10	16.1 N	120.8E	45	17	48	98	178	235	368			0	0	10	20	25	20		
03052712	11	16.3N	121.8E	35	8	37	131	206	251	405			0	10	15	20	20	20		
03052800	12	17.4 N	123.7E	30	62	142	209	230	281				-5	0	0	0	0			
03052806	13	18.8N	124.0E	30	85	122	156	160	169				-5	0	0	10	0			
03052812	14	19.7N	125.0E	30	101	175	203	234	266				-5	-5	10	15	15			
03052818	15	20.8N	125.6E	30	161	167	187	254	331				-5	0	- 15	-	15			
03052900	16	21.8 N	126.3E	35	40	73	80	21					10	10	15	25				
03052906	17	22.6 N	127.2E	35	12	57	51	19					0	- 10	- 10	-5				
03052912	18	23.4 N	128.1E	45	18	36	22						-5	10	10					
03052918	19	24.4 N	129.3E	55	6	20	54						0	0	0					
03053000	20	25.8 N	130.1E	55	13	48							0	0						
03053006	21	27.8 N	131.0E	55	28	68							5	10						
03053012	22	29.9 N	131.6E	55	16								0							
03053018	23	32.0 N	132.0E	50	0								0							

			AVERAGE		28	58	86	123	183	280	431	420	2	4	8	11	11	11	21

Figure 1-05W-1. 270016 Z May 2003 multi-sensor satellite images of TY 05W (Linfa), located along the west coast of Luzon, with a peak intensity of 55 knots.

TROPICAL STORM 05W (LINFA)
25-30 MAY 2003

Time Intensity for 05W

Tropical Storm (TS) 06W (Nangka)*

First Poor : 2200Z 29 May 03

First Fair : 0130Z 31 May 03

First TCFA : 0500Z 31 May 03

First Warning : 1200Z 31 May 03
Last Warning : 0000Z 03 Jun 03, Extratropical
Max Intensity : 40 kts, gusts to 50 kts
Landfall : NA

Total Warnings : 11
Remarks:

1) Tropical Storm (TS) 06W was initially detected as a tropical disturbance in the South China Sea on 29 May, 2003. The first warning was issued at $1200 Z$ on 31 May. Moderate vertical wind shear was present throughout the life of the cyclone, resulting in an intensification rate lower than a Dvorak Tnumber/day.

TS 06W reached a maximum intensity of 45 knots during northeast movement through the Luzon Strait and passage east of Taiwan. After approximately $1800 Z$ on 02 May, the cyclone encountered increased vertical wind shear associated with the mid-latitude westerly winds, weakened to tropical depression strength and transitioned to an extratropical cyclone after 03 June at 0000Z.
2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03053100		17.1 N	117.2E	15																
03053106		17.1 N	117.1E	25																
03053112	1	17.2N	117.0E	25	37	59	88	113	203	621			0	0	-5	-10	0	20		
03053118	2	17.4 N	117.0E	30	16	52	133	239	315	668			0	0	-5	0	0	25		
03060100	3	17.6N	117.2E	30	12	75	153	234	265	644			0	-5	-5	0	10	20		
03060106	4	17.9N	117.5E	35	24	88	187	260	428				0	-5	0	5	20			
03060112	5	18.5N	118.2E	40	49	91	133	205	403				-5	-5	0	10	25			
03060118	6	19.2N	118.9E	45	22	46	81	144	270				-5	5	10	20	25			
03060200	7	20.0N	119.6E	45	23	66	101	217	283				0	5	15	20	25			
03060206	8	20.8N	120.8E	45	46	80	172	312					5	10	20	25				
03060212	9	21.5N	122.0E	45	30	56	88	200					5	10	15	15				
03060218	10	22.2N	123.3E	45	16	78	185						-15	-5	5					
03060300	11	23.0 N	125.3E	40	5	66	154						-10	0	0					
03060306		24.1 N	127.9E	35																
03060312		25.6 N	130.9E	30																
03060318		27.4 N	133.8E	25																
03060400		29.4 N	136.8E	25																
			AVERAGE		26	69	134	214	309	645			4	5	7	12	15	22		
			BIAS										-2	1	5	9	15	22		
			\# CASES		11	11	11	9	7	3			11	11	11	9	7	3		

Figure 1-06W-1. 010630 Z June 2003 Goes-9 visible imagery of TS 06W (Nangka), located in the south china sea northwest of Luzon with an estimated intensity of 35 knots.

TROPICAL STORM 06W (NANGKA)
 31 MAY - 03 JUNE 2003

Time Intensity for 06W

Intensity (kts)

Tropical Storm (TS) 06W (Nangka)

First Poor : 2200Z 29 May 03
First Fair : 0130Z 31 May 03
First TCFA : 0500Z 31 May 03
First Warning : 1200Z 31 May 03
Last Warning : 0000Z 03 Jun 03, Extratropical
Max Intensity : 40 kts, gusts to 50 kts
Landfall : NA
Total Warnings : 11
Remarks:

1) Tropical Storm (TS) 06W was initially detected as a tropical disturbance in the South China Sea on 29 May, 2003 and, approximately 36 hours later, the first warning was issued at $1200 Z$ on 31 May. Moderate vertical wind shear was present throughout the life of the cyclone, resulting in an intensification rate lower than a Dvorak T-number/day.

TS 06W reached a maximum intensity of 45 knots during northeast movement through the Luzon Strait and passage east of Taiwan. After approximately $1800 Z$ on 02 May, the cyclone encountered increased vertical winds shear associated with the mid-latitude westerly winds, weakened to tropical depression strength and transitioned to an extratropical cyclone after 03 June at 0000Z.
2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

Statistics for JTWC on TS 06W

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03053100		17.1 N	117.2E	15																
03053106		17.1 N	117.1E	25																
03053112	1	17.2N	117.0E	25	37	59	88	113	203	621			0	0	-5	-10	0	20		
03053118	2	17.4N	117.0E	30	16	52	133	239	315	668			0	0	-5	0	0	25		
03060100	3	17.6N	117.2E	30	12	75	153	234	265	644			0	-5	-5	0	10	20		
03060106	4	17.9 N	117.5E	35	24	88	187	260	428				0	-5	0	5	20			
03060112	5	18.5 N	118.2E	40	49	91	133	205	403				-5	-5	0	10	25			
03060118	6	19.2N	118.9E	45	22	46	81	144	270				-5	5	10	20	25			
03060200	7	20.0 N	119.6E	45	23	66	101	217	283				0	5	15	20	25			
03060206	8	20.8N	120.8E	45	46	80	172	312					5	10	20	25				
03060212	9	21.5 N	122.0E	45	30	56	88	200					5	10	15	15				
03060218	10	22.2 N	123.3E	45	16	78	185						-15	-5	5					
03060300	11	23.0 N	125.3E	40	5	66	154						-10	0	0					
03060306		24.1 N	127.9E	35																
03060312		25.6 N	130.9E	30																
03060318		27.4 N	133.8E	25																
03060400		29.4 N	136.8E	25																
			AVERAGE		26	69	134	214	309	645			4	5	7	12	15	22		
			BIAS										-2	1	5	9	15	22		
			\# CASES		11	11	11	9	7	3			11	11	11	9	7	3		

Figure 1-06W-1. 010630Z June 2003 Goes-9 visible imagery of TS 06W (Nangka), located in the south china sea northwest of Luzon with an estimated intensity of 35 knots.

TROPICAL STORM 06W (NANGKA)
 31 MAY - 03 JUNE 2003

Time Intensity for 06W
Intensity (kts)

Fix Date (Zulu)

Typhoon (TY) 07W (Soudelor)*

First Poor : 0600Z 09 Jun 03
First Fair : 1600Z 09 Jun 03
First TCFA : $2100 Z 09$ Jun 03
First Warning : 1800Z 11 Jun 03
Last Warning : $1800 Z 18$ Jun 03
Max Intensity : 115 kts, gusts to 140 kts
Landfall : None
Total Warnings : 33

Remarks:

(1) Typhoon (TY) 07W was first noted on 09 June as an area of heavy convection; within 15 hours a Tropical Cyclone Formation Alert had been issued for this area. Over the next 45 hours the cyclone developed very slowly due to vertical wind shear inhibiting development. After $1200 Z$ on 11 June, vertical wind shear had decreased, which allowed the cyclone to develop at a climatological rate for 48 hours, intensifying to 50 knots as it tracked west, south of the subtropical ridge. By 0000 Z on 14 June, the cyclone began to move more poleward, into a weakness in the subtropical ridge associated with a mid-latitude longwave trough. During the intial poleward movement, the low level circulation center (IIcc) had become partially exposed and intensity decreased to 45 knots. After 24 hours, the llcc moved under the deep convection, however the rate of intensification was slightly below 1 Dvorak T-number / day as the cyclone moved toward the Ryukyu Islands.

At around $1200 Z$ on 17 June, when TY 07W was east of Taiwan, it began to rapidly intensify at a rate of 1.5 Dvorak T-numbers in 18 hours, then attained peak intensity of 115 knots around 0600 Z on 18 June. Intensification was enhanced by upper level outflow into the mid-latitude longwave trough while TY 07W was moving north-northeastward, poleward of the subtropical ridge axis. After peak intensity was attained, the cyclone experienced vertical wind shear, associated with the mid-latitude westerlies, and began to rapidly weaken and transition to an extratropical system.
(2) Although TY 07W came close to several land masses, reports of damage were noted from only one region. Damage reports from the Philippines indicated there were 11 casualties and thousands of persons temporarily displaced by flooding due to heavy rains associated with this cyclone.

*Named by WMO Designated RSMC

Statistics for JTWC on TY07W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03060700		8.2 N	155.8E	15																
03060706		8.2 N	153.8E	15																
03060712		8.1 N	152.2E	15																
03060718		8.2 N	151.4E	15																
03060800		8.2 N	150.8E	15																
03060806		8.3N	150.2E	15																
03060812		8.4 N	149.7E	15																
03060818		8.6N	149.1E	15																
03060900		8.7N	148.4E	15																
03060906		8.8 N	147.4E	15																
03060912		8.9 N	146.3E	15																
03060918		9.1 N	145.4E	20																
03061000		9.4 N	144.6E	20																
03061006		9.5 N	143.8E	20																
03061012		9.6 N	142.9E	20																
03061018		9.6 N	141.8E	20																
03061100		9.6 N	140.7E	20																
03061106		9.6 N	139.5E	20																
03061112		9.4 N	138.4E	20																
03061118	1	9.4 N	137.2E	25	5	48	62	118	147	60			0	0	5	-5	-5	20		
03061200	2	9.5 N	135.9E	25	0	49	88	60	117	254			0	0	0	-5	0	20		
03061206	3	9.8 N	134.7E	30	31	89	88	111	190	295			0	5	-5	-5	10	15		
03061212	4	10.1 N	133.8E	30	13	19	80	114	102	225	186	181	0	0	-5	-5	15	20	0	0
03061218	5	10.4 N	132.9E	30	35	106	147	131	81	13	61	134	0	-	-	20	40	35	40	15
03061300	6	10.8 N	131.7E	35	11	86	141	123	58	21	84	147	0	-5	5	30	45	40	30	5

03061306	7	11.3 N	130.4E	45	24	100	135	117	102	134	209	208	0	5	25	45	50	45	20	-40
03061312	8	11.5 N	129.1E	45	41	111	118	89	98	138	254	345	0	5	30	50	45	45	15	50
03061318	9	11.5 N	128.2E	50	18	76	133	185	221	103	105	161	0	15	25	30	10	0	30	-30
03061400	10	11.4 N	127.4E	50	23	84	141	143	141	132	281	336	0	15	0	15	15	35	55	25
03061406	11	12.0 N	127.0E	45	13	30	71	75	73	29	100	242	0	5	0	-5	5	10	60	25
03061412	12	12.4 N	126.6E	45	5	55	58	46	32	16	147	362	0	5	-5	-5	5	15	65	-20
03061418	13	13.1 N	126.4E	45	5	24	76	112	151	175	239	321	0	5	0	10	10	35	40	-15
03061500	14	13.8 N	126.2E	45	33	97	133	185	217	262	245	235	0	0	0	10	0	50	30	-10
03061506	15	14.4 N	125.9E	50	21	67	92	144	163	267	284		-5	10	0	0	10	70	30	
03061512	16	14.9 N	125.4E	55	18	37	88	117	152	250	187		0	0	15	0	10	65	-	
03061518	17	15.6 N	124.9E	60	6	23	72	87	115	108	163		0	10	10	0	25	35	- 10	
03061600	18	16.5 N	124.5E	60	17	59	90	109	122	84	327		0	10	0	5	40	25	10	
03061606	19	17.3 N	124.0E	60	16	51	53	18	34	236			0	5	5	20	5	- 20		
03061612	20	18.1 N	123.4E	60	8	13	17	34	16	230			0	-5	0	30	60	$\overline{15}$		
03061618	21	19.0 N	123.0E	65	5	29	35	16	57	152			0	10	-5	45	$\overline{3}$	5		
03061700	22	20.0 N	123.1E	75	8	8	40	16	93	174			0	15	20	50	- 20	5		
03061706	23	20.8 N	123.2E	75	5	24	25	75	151				0	15	- 5	-	25			
03061712	24	22.1 N	123.6E	75	8	100	225	198	175				0	10	- 45	20	15			
03061718	25	23.6 N	123.8E	90	0	67	41	74	63				0	30	$\overline{-}$	- 15	-5			
03061800	26	25.2 N	123.9E	100	18	34	57	109	118				0	-5	5	0	5			
03061806	27	26.2 N	124.5E	115	17	62	120	159					0	30	20	20				
03061812	28	27.8 N	125.4 E	115	8	73	157	147					0	20	10	0				
03061818	29	30.4 N	127.1E	85	18	42	70						0	-5	0					
03061900	30	32.5 N	128.5E	70	0	52	60						0	0	-5					
03061906	31	35.4 N	130.1E	65	36	84							0	5						
03061912	32	37.4 N	132.5E	55	7	33							0	-5						

03061918	33	$39.2 N$	134.9 E	45	30									0					

Figure 1-07W-1. $180225 Z$ June 2003 MODIS true-color image of TY 07W (Soudelor), located 105nm east of Taiwan, with an intensity of 100 knots.

Figure 1-07W-2. $180644 Z$ June 2003 Goes-9 infrared imagery of TY 07W (Soudelor), located 175 nm west-southwest of Okinawa, Japan, with an estimated peak intensity of 115 knots.

Figure 1-07W-3. $181120 Z$ June 200385 GHz SSM/I imagery of TY 07W (Soudelor), located 150 nm west-northwest of Okinawa, Japan, with an estimated peak intensity of 115 knots.

TYPHOON 07W (SOUDELOR)

Time Intensity for 07 W

Intensity (kts)

Typhoon (TY) 07W (Soudelor)*

First Poor : 0600Z 09 Jun 03

First Fair : 1600Z 09 Jun 03

First TCFA : $2100 Z 09$ Jun 03

First Warning : 1800Z 11 Jun 03
Last Warning : 1800Z 18 Jun 03
Max Intensity : 115 kts, gusts to 140 kts
Landfall : None

Total Warnings : 33
Remarks:
(1) Typhoon (TY) 07W was first noted on 09 June as an area of heavy convection and within 15 hours a Tropical Cyclone Formation Alert had been issued for this area. Over the next 45 hours the cyclone developed very slowly due to vertical wind shear limiting development. After $1200 Z$ on 11 June, vertical wind shear had decreased, which allowed the cyclone to develop at a climatological rate for 48 hours, intensifying to 50 knots as it tracked west, south of the subtropical ridge. By 0000 Z on 14 June, the cyclone began to move more poleward, into a weakness in the subtropical ridge associated with a midlatitude longwave trough. During the intial poleward movement, the low level circulation center (Ilcc) had become partially exposed and intensity decreased to 45 knots. After 24 hours, the llcc moved under the deep convection, however the rate of intensification was slightly below 1 Dvorak T-number / day as the cyclone moved toward the Ryukyu Islands.

At around $1200 Z$ on 17 June, when TY 07W was east of Taiwan, it began to rapidly intensify at a rate of 1.5 Dvorak T-numbers in 18 hours, then attained peak intensity of 115 knots around $0600 Z$ on 18 June. Intensification was enhanced by upper level outflow into the mid-latitude longwave trough while TY 07W was moving north-northeastward, poleward of the subtropical ridge axis. After peak intensity was attained, the cyclone experienced vertical wind shear, associated with the mid-latitude westerlies, and began to rapidly weaken and transition to an extratropical system.
(2) Although TY 07W came close to several land masses, reports of damage were noted from only one region. Damage reports from the Philippines indicated there were 11 casualties and thousands of persons temporarily displaced by flooding due to heavy rains associated with this cyclone.
*Named by WMO Designated RSMC

Statistics for JTWC on TY07W																				
	WRN	BEST	TRACK			OSITI	ON E	RRO	RS					ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03060700		8.2 N	155.8E	15																
03060706		8.2 N	153.8E	15																
03060712		8.1 N	152.2E	15																
03060718		8.2 N	151.4E	15																
03060800		8.2 N	150.8E	15																
03060806		8.3 N	150.2E	15																
03060812		8.4 N	149.7E	15																
03060818		8.6 N	149.1E	15																
03060900		8.7 N	148.4E	15																
03060906		8.8 N	147.4E	15																
03060912		8.9 N	146.3E	15																
03060918		9.1 N	145.4E	20																
03061000		9.4 N	144.6E	20																
03061006		9.5 N	143.8E	20																
03061012		9.6 N	142.9E	20																
03061018		9.6 N	141.8E	20																
03061100		9.6 N	140.7E	20																
03061106		9.6 N	139.5E	20																
03061112		9.4 N	138.4E	20																
03061118	1	9.4 N	137.2E	25	5	48	62	118	147	60			0	0	5	-5	-5	20		
03061200	2	9.5 N	135.9E	25	0	49	88	60	117	254			0	0	0	-5	0	20		
03061206	3	9.8 N	134.7E	30	31	89	88	111	190	295			0	5	-5	-5	10	15		
03061212	4	10.1 N	133.8E	30	13	19	80	114	102	225	186	181	0	0	-5	-5	15	20	0	0
03061218	5	10.4 N	132.9E	30	35	106	147	131	81	13	61	134	0	10	10	20	40	35	40	15
03061300	6	10.8 N	131.7E	35	11	86	141	123	58	21	84	147	0	-5	5	30	45	40	30	5
03061306	7	11.3 N	130.4E	45	24	100	135	117	102	134	209	208	0	5	25	45	50	45	20	-40
03061312	8	11.5 N	129.1E	45	41	111	118	89	98	138	254	345	0	5	30	50	45	45	15	-50
03061318	9	11.5 N	128.2E	50	18	76	133	185	221	103	105	161	0	15	25	30	10	0	-	-30
03061400	10	11.4 N	127.4E	50	23	84	141	143	141	132	281	336	0	15	0	15	-	-	- 5	-25

03061406	11	12.0 N	127.0E	45	13	30	71	75	73	29	100	242	0	5	0	-5	5	- 10	60	-25
03061412	12	12.4 N	126.6E	45	5	55	58	46	32	16	147	362	0	5	-5	-5	5	15	65	-20
03061418	13	13.1 N	126.4E	45	5	24	76	112	151	175	239	321	0	5	0	10	10	35	40	-15
03061500	14	13.8 N	126.2E	45	33	97	133	185	217	262	245	235	0	0	0	10	0	50	30	-10
03061506	15	14.4 N	125.9E	50	21	67	92	144	163	267	284		-5	10	0	0	10	70	30	
03061512	16	14.9 N	125.4E	55	18	37	88	117	152	250	187		0	0	15	0	10	65	15	
03061518	17	15.6 N	124.9E	60	6	23	72	87	115	108	163		0	10	10	0	25	35	10	
03061600	18	16.5 N	124.5E	60	17	59	90	109	122	84	327		0	10	0	5	40	25	10	
03061606	19	17.3N	124.0E	60	16	51	53	18	34	236			0	5	5	20	55	20		
03061612	20	18.1 N	123.4E	60	8	13	17	34	16	230			0	-5	0	30	60	15		
03061618	21	19.0 N	123.0E	65	5	29	35	16	57	152			0	10	-5	45	30	-5		
03061700	22	20.0 N	123.1E	75	8	8	40	16	93	174			0	15	20	50	20	-5		
03061706	23	20.8 N	123.2E	75	5	24	25	75	151				0	15	50	35	25			
03061712	24	22.1 N	123.6E	75	8	100	225	198	175				0	10	45	20	15			
03061718	25	23.6N	123.8E	90	0	67	41	74	63				0	$\overline{-}$	20	15	-5			
03061800	26	25.2 N	123.9E	100	18	34	57	109	118				0	-5	5	0	-5			
03061806	27	26.2N	124.5E	115	17	62	120	159					0	30	20	20				
03061812	28	27.8 N	125.4E	115	8	73	157	147					0	20	10	0				
03061818	29	30.4 N	127.1E	85	18	42	70						0	-5	0					
03061900	30	32.5 N	128.5E	70	0	52	60						0	0	-5					
03061906	31	35.4 N	130.1E	65	36	84							0	5						
03061912	32	37.4 N	132.5E	55	7	33							0	-5						
03061918	33	39.2 N	134.9E	45	30								0							
03062000		40.5 N	137.2E	45																
			AVERAGE		16	57	90	104	115	153	191	243	0	8	11	17	21	28	30	21
			BIAS										0	2	-1	-1	-3	-7	16	-18
			\# CASES		33	32	30	28	26	22	15	11	33	32	30	28	26	22	15	11

Figure 1-07W-1. $180225 Z$ June 2003 MODIS true-color image of TY 07W (Soudelor), located 105 nm east of Taiwan, with an intensity of 100 knots.

Figure 1-07W-2. $180644 Z$ June 2003 Goes-9 infrared imagery of TY 07W (Soudelor), located 175 nm west-southwest of Okinawa, Japan, with an estimated peak intensity of 115 knots.

Figure 1-07W-3. $181120 Z$ June 200385 GHz SSM/I imagery of TY 07W (Soudelor), located 150 nm west-northwest of Okinawa, Japan, with an estimated peak intensity of 115 knots.

TYPHOON 07W (SOUDELOR)

Time Intensity for 07W

Intensity (kts)

- KGWC
- PGTW
- KWBC
- ODT
- T-Numbers
- Best Track

Fix Date (Zulu)

Typhoon (TY) 08W (Koni)*

First Poor : 0600 Z 11 Jul 03
First Fair : 060013 Jul 03
First TCFA : 020015 Jul 03
First Warning : $1200 Z 15$ Jul 03
Last Warning : 1800Z 22 Jul 03
Max Intensity : 65 kts, gusts to 80 kts
Landfall : Central Philippines, Hainan Island and North Vietnam
Total Warnings : 30
Remarks:

1) Typhoon (TY) 08W was first detected as a tropical disturbance northwest of Yap around $1200 Z$ on 11 July. The first warning on this circulation was issed at $1200 Z$ on 15 July.

The subtropical ridge situated to the north of the system provided the primary steering for TY 08W. As TY 08W tracked westward over the Philippines, land effects caused a brief period of weakening, which was eased as the system again tracked over open water in the South China Sea.

Subsequent to making landfall on Hainan Island, the cyclone tracked more westward and weakened as the ridge to the north began to build. TY 08W again made landfall, near Hanoi, Vietnam where it quickly dissipated over land. A final warning was issued at 1800Z on 22 July.

Although TY 08W had maximum winds of 65 knots, no well-formed eye was ever noted in any meteorological satellite data. Rather, the well-defined banding features of this cyclone was the reason TY 08W was designated as a typhoon.
2) Damages reported on Hainan Islands were moderate, with interruptions in air and maritime service being primary. Vietnam indicated three casualties and 18 injured. Approximately 1,000 homes destroyed with significant damage to agricultural interests.

*Named by WMO designated RSMC

Statistics for JTWC on TY 08W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03071412		10.5 N	136.9E	15																
03071418		10.5 N	135.7E	15																
03071500		10.4 N	134.5E	15																
03071506		10.2 N	133.3E	20																
03071512	1	10.0 N	132.1E	25	30	54	60	87	135	213	196	189	0	0	5	-5	5	0	0	-20
03071518	2	10.0 N	130.9E	25	6	13	54	104	190	284	306	334	0	0	-5	0	5	0	-	20
03071600	3	10.1 N	129.8E	30	13	30	47	109	192	245	255	305	0	10	0	5	0	-5	-	-25
03071606	4	10.3 N	128.8E	30	13	24	87	164	240	285	263	268	5	0	5	5	0	-5	20	5
03071612	5	10.6 N	127.8E	30	26	54	130	219	259	267	221	238	10	0	5	0	-5	-5	- 20	5
03071618	6	10.9 N	126.8E	40	35	100	179	247	264	289	354	422	5	10	5	0	0	15	15	0
03071700	7	11.0 N	125.7E	45	6	85	180	218	238	253	241	289	0	0	-5	-5	10	$\overline{20}$	15	0
03071706	8	11.0 N	124.5E	40	6	71	149	174	171	121	173	247	0	0	-10	- 10	0	- 10	0	10
03071712	9	11.3 N	123.2E	40	11	67	100	120	109	62	121	231	0	10	10	0	10	-5	10	25
03071718	10	11.5 N	121.9E	40	35	29	45	55	59	17	93	166	0	0	10	20	20	5	5	10
03071800	11	11.8 N	120.5E	45	48	34	30	34	17	13	62		0	5	15	20	10	5	0	
03071806	12	12.4 N	119.4E	45	8	18	36	42	30	21	119		-5	0	10	10	-5	0	- 10	
03071812	13	13.0 N	118.6E	45	18	42	48	42	13	62	141		-5	0	10	0	-5	0	5	
03071818	14	13.4 N	117.9E	45	21	34	23	34	50	97	210		0	5	5	-5	0	10	10	
03071900	15	13.9 N	117.3E	45	13	8	6	31	27	114			0	5	-5	-5	0	-5		
03071906	16	14.5N	116.7E	45	8	17	24	21	8	102			0	-5	- 15	- 10	0	$\overline{10}$		

03071912	17	15.1 N	116.2 E	45	5	21	26	33	48	138				0	-	-	-	-	-5	15
03071918	18	15.7 N	115.6 E	50	5	13	19	24	83	198			0	-5	-5	5	-	15	15	

Figure 1-08W-1. 200001 Z July 2003 GOES-9 visible satellite imagery of TY 08W (Koni), located 310 nm west of Luzon, Philippines in the south china sea at its peak intensity of 65 knots.

Figure 1-08W-2. $200530 Z$ July 2003 MODIS true-color image of TY 08W (Koni), located in the South China Sea, with a maximum intensity of 65 knots.

TYPHOON 08W (KONT)

15-22 JULY 2003

LEGEND

24-HR BEST TRACK POSITION O- TROPICAL DISTURBANCE TROPICAL DEPRESSION
$\xi \xi \xi$ TROPICAL STORM
$5 \xi\}$ TYPHOON/SUPER TYPHOON
24-HR BEST TRACK POSITION IDENTIFICATION
DTG SPD(KT) INT(KT)
$\operatorname{xxxz} \quad \mathrm{XX} \quad \mathrm{xx}$

Time Intensity for 08W

Intensity (kts)

- KGWC
- PGTW
- KWBC
- CIRA
- ODT
- OTHER
- T-Numbers
- Best Track

Typhoon (TY) 08W (Koni)

First Poor : 0600Z 11 Jul 03
First Fair : 060013 Jul 03

First TCFA : 020015 Jul 03

First Warning: 1200Z 15 Jul 03
Last Warning: 1800Z 22 Jul 03
Max Intensity : 65 kts, gusts to 80 kts
Landfall : Central Philippines, Hainan Island and North Vietnam
Total Warnings : 30
Remarks:

1) Typhoon (TY) 08W was first detected as a tropical disturbance northwest of Yap around $1200 Z$ on 11 July. Subsequently, the first warning on this circulation was issed at 1200 Z on 15 July.

Primary steering for the system was provided by the subtropical ridge situated to the north of the system. As TY 08W tracked westward over the Philippines, land effects caused a brief period of weakening, which was eased as the system again tracked over open water in the South China Sea.

Subsequent to making landfall on Hainan Island, the cyclone tracked more westward and weakened as the ridge to the north began to build. TY 08W again made landfall, near Hanoi, Vietnam where it quickly dissipated over land. A final warning was issued at $1800 Z$ on 22 July.

Although TY 08W had maximum winds of 65 knots, no well-formed eye was ever noted in any meteorological satellite data. Rather, the well-defined banding features of this cyclone was the reason TY 08W was designated as a typhoon.
2) Damages reported on Hainan Islands were moderate, with interruptions in air and maritime service being primary. Vietnam indicated three casualties and 18 injured. Approximately 1,000 homes destroyed with significant damage to agricultural interests.

Statistics for JTWC on TY 08W

Statistics for JTWC on TY 08W																				
	WRN	BEST	TRACK			SITI	ON	RRO	RS					IND	ERR	ROR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03071412		10.5 N	136.9E	15																
03071418		10.5 N	135.7E	15																
03071500		10.4 N	134.5E	15																
03071506		10.2 N	133.3E	20																
03071512	1	10.0 N	132.1E	25	30	54	60	87	135	213	196	189	0	0	5	-5	5	0	0	-20
03071518	2	10.0N	130.9E	25	6	13	54	104	190	284	306	334	0	0	-5	0	5	0	-5	-20
03071600	3	10.1 N	129.8E	30	13	30	47	109	192	245	255	305	0	10	0	5	0	-5	-	-25
03071606	4	10.3 N	128.8E	30	13	24	87	164	240	285	263	268	5	0	5	5	0	-5	20	5
03071612	5	10.6 N	127.8E	30	26	54	130	219	259	267	221	238	10	0	5	0	-5	-5	20	5
03071618	6	10.9 N	126.8E	40	35	100	179	247	264	289	354	422	5	10	5	0	0	15	-	0
03071700	7	11.0 N	125.7E	45	6	85	180	218	238	253	241	289	0	0	-5	-5	10	20	- 15	0
03071706	8	11.0 N	124.5E	40	6	71	149	174	171	121	173	247	0	0	10	10	0	10	0	10
03071712	9	11.3 N	123.2E	40	11	67	100	120	109	62	121	231	0	10	10	0	10	-5	10	25
03071718	10	11.5N	121.9E	40	35	29	45	55	59	17	93	166	0	0	10	20	20	5	5	10
03071800	11	11.8 N	120.5E	45	48	34	30	34	17	13	62		0	5	15	20	10	5	0	
03071806	12	12.4 N	119.4E	45	8	18	36	42	30	21	119		-5	0	10	10	-5	0	- 10	
03071812	13	13.0 N	118.6E	45	18	42	48	42	13	62	141		-5	0	10	0	-5	0	5	
03071818	14	13.4 N	117.9E	45	21	34	23	34	50	97	210		0	5	5	-5	0	10	10	
03071900	15	13.9 N	117.3E	45	13	8	6	31	27	114			0	5	-5	-5	0	-5		
03071906	16	14.5N	116.7E	45	8	17	24	21	8	102			0	-5	15	$\overline{-}$	0	- 10		
03071912	17	15.1 N	116.2E	45	5	21	26	33	48	138			0	15	15	10	- 10	-5		
03071918	18	15.7N	115.6E	50	5	13	19	24	83	198			0	-5	-5	5	- 15	15		
03072000	19	16.3 N	115.0E	60	13	13	13	25	103				5	10	15	15	-5			

03072006	20	17.0 N	114.3 E	65	6	6	17	78	79				0	10	20	10	0			
03072012	21	17.6 N	113.6 E	65	0	24	40	99	100				0	10	20	-5	15			
03072018	22	18.0 N	112.8 E	65	0	6	66	84	138					0	5	5	0	5		
03072100	23	18.3 N	112.0 E	65	0	21	96	110						0	10	-	0			

Figure 1-08W-1. 200001Z July 2003 GOES-9 visible satellite imagery of TY 08W (Koni), located 310 nm west of Luzon, Philippines in the south china sea at its peak intensity of 65 knots.

Figure 1-08W-2. 200530Z July 2003 MODIS true-color image of TY 08W (Koni), located in the South China Sea, with a maximum intensity of 65 knots.

TYPHOON 08W (KONT)

15-22 JULY 2003

LEGEND
24-HR BEST TRACK POSITION 00 TROPICAL DISTURBANCE TROPICAL DEPRESSION $\xi \Leftarrow \Leftarrow$ TROPICAL STORM 595 TYPHOON/SUPER TYPHOON

24-HR BEST TRACK POSITION
IDENTIFICATION
DTG SPD(KT) INT(KT)
XxxXz $\quad \mathrm{Xx}$ XX

Time Intensity for 08W

Super Typhoon (STY) 09W (Imbudo)*

First Poor : 0600Z 14Jul 03
First Fair : $0600 Z 15$ Jul 03
First TCFA : 0930Z 16 Jul 03
First Warning : 1800Z 16 Jul 03
Last Warning : $1200 Z 24$ Jul 03
Max Intensity : 130 kts, gusts to 160 kts
Landfall : Yangjiang, China
Total Warnings : 32
Remarks:

1) Super Typhoon (STY) 09W was initially detected and monitored as an area of heavy convection very near Chuuk on 13 July 2003. Subsequently, another area of convection developed southwest of Chuuk around 15 July. For the next 48 hours this second area increased in organization and a first warning was issued by $1800 Z$ on 16 July. The cyclone began to rapidly organize and track northwest along the southwestern periphery of the mid-level steering ridge. Favorable upper tropospheric synoptic flow and warm sea temperatures allowed for a steady rate of intensification slightly greater than climatological. A period of rapid development caused by an increase in equatorward outflow and increased outflow towards a TUTT cell to the northeast occurred from 0000Z on 19 July to 1200 Z on 20 July resulted in an intensity increase of 2.5 Dvorak T-Numbers in just 36 hours.

The system then tracked northwest over Luzon, making landfall near 0300Z on 22 July with an estimated intensity of 110 knots and weakened only slightly over central Luzon. After emerging into the South China Sea, STY 09W tracked west-northwest at a rapid 15 knots and reintensified to 90 knots. The cyclone made landfall for a second time on the coast of China at approximately 0000 Z on 24 July with an intensity of 85 knots. STY 09W then weakened over land and dissipated within 24 hours.
2) International news agencies reported 21 persons killed in the Philippines and as many as 20 casualties were reported in southern China. In the Philippines, crop damages were estimated at \$37 million. In Southern China, reports indicated that several small coastal reservoirs were damaged, many homes damaged or destroyed and significant losses in livestock experienced in some locations.
*Named by WMO Designated RSMC

Statistics for JTWC on STY09W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	001	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03071500		3.6N	150.0E	15																
03071506		3.6 N	148.9E	15																
03071512		3.6 N	147.7E	15																
03071518		3.7 N	146.5E	15																
03071600		4.3 N	145.6E	20																
03071606		5.1 N	144.9E	20																
03071612		5.8 N	144.1E	20																
03071618	1	6.6 N	143.2E	25	33	731	113	161	205	253			0	5	-5	0	5	5		
03071700	2	7.4N	142.2E	30	8	48	101	148	173	204			0	0	0	5	10	15		
03071706	3	8.2N	141.1E	30	16	34	95	148	175	200			0	-5	-5	-5	-5	25		
03071712	4	8.8N	140.2E	40	21	36	90	129	149	188	278	488	0	0	5	5	-5	35	30	15
03071718	5	9.3 N	139.4E	45	5	48	77	118	128	183	347	503	0	0	0	0	-5	35	25	5
03071800	6	9.7N	138.6E	50	31	427	70	88	72	129	253	406	0	5	5	-5	15	40	20	5
03071806	7	9.9N	137.7E	55	371	125	51	53	51	135	231	336	0	0	0	10	25	30	5	5
03071812	8	10.1 N	136.9E	55	8	30	43	47	82	174	299	385	0	0	$\overline{10}$	15	40	30	15	5
03071818	9	10.4 N	136.1E	65	8	221	17	24	71	225	337	390	0	-5	15	$\overline{30}$	40	15	25	40
03071900	10	10.4 N	135.3E	65	8	81	12	39	105	265	372	434	0	- 15	25	-	40	-5	25	20
03071906	11	10.5 N	134.6E	75	5	136	6	39	102	213	281	389	0	$\overline{-}$	25	- 40	25	30	30	30
03071912	12	10.7 N	133.9E	85	11	17	18	60	117	234	296	361	10	$\overline{20}$	- 4	35	25	30	5	35

03071918	13	11.1 N	133.2E	90	21	38	69	103	152	280	329	380	10	20	35	20	10	25	30	45
03072000	14	11.6 N	132.4E	100	13	41	82	112	168	304	314	402	10	25	15	-5	10	10	30	20
03072006	15	12.1 N	131.5E	110	0	30	75	110	173	271	316	501	5	0	10	20	45	35	-5	-10
03072012	16	12.6 N	130.5E	130	13	45	83	133	201	265	309	480	0	15	20	30	55	30	5	-10
03072018	17	13.1 N	129.4E	130	13	38	78	142	192	263	331		0	15	20	40	25	35	15	
03072100	18	13.7 N	128.2E	130	5	23	75	151	218	259	374		0	5	0	20	10	0	15	
03072106	19	14.3 N	127.0E	125	8	37	102	152	205	258	310		5	10	35	10	10	5	15	
03072112	20	15.0N	125.8E	125	0	29	87	143	179	238	266		5	15	20	10	20	5	$\overline{10}$	
03072118	21	15.7 N	124.4E	120	5	42	92	149	181	249			10	30	0	15	5	15		
03072200	22	16.4 N	123.0E	115	5	46	100	128	137	239			15	10	15	5	0	10		
03072206	23	17.0N	121.3E	90	16	53	88	107	139	306			0	15	5	0	- 10	-5		
03072212	24	17.6N	119.8E	80	8	54	83	75	155	295			0	0	10	25	25	-5		
03072218	25	18.1 N	118.3E	90	20	50	74	76	130				0	5	15	- 20	10			
03072300	26	18.5 N	116.8E	90	16	42	36	70	147				0	5	10	15	20			
03072306	27	18.9 N	115.4E	90	5	31	18	53					0	-5	30	20				
03072312	28	19.4 N	114.2E	90	13	25	37	81					-5	$\overline{10}$	- 20	20				
03072318	29	19.8 N	113.0E	85	8	85	81	100					5	10	0	15				
03072400	30	21.2N	111.9E	85	6	56	89	101					5	-5	-5	10				
03072406	31	22.0 N	110.2E	75	5	17	50						5	-5	-5					
03072412	32	22.8 N	108.9E	55	12	79							0	-5						
03072418		23.3N	107.5E	45																
03072500		23.5 N	106.1E	40																
03072506		23.8 N	104.7E	35																
03072512		24.7 N	103.7E	30																
			AVERAGE		12	39	67	101	146	235	308	420	3	9	13	17	19	20	18	19
			BIAS										1	0	-4	-6	-5	-3	6	16
			\# CASES		32	32	31	30	26	24	17	13	32	32	31	30	26	24	17	13

Figure 1-09W-1. $202025 Z$ July 2003 GOES-9 enhanced infrared imagery of STY 09W (Imbudo), the small eye was located 155 nm east of Luzon, Philippines in the south china sea at its peak intensity of 130 knots.

Figure 1-09W-2. $212206 Z$ July 2003 GOES-9 SSM/I color composite imagery of STY 09W (Imbudo), the system was undergoing a concentric eyewall cycle. Located 440 nm east southeast of Luzon, Philippines at its peak intensity of 130 knots.

Figure 1-09W-3. $230255 Z$ July 2003 MODIS true-color image of STY 09W (Imbudo), located in the South China Sea, with an intensity of 90 knots.

SUPER TYPHOON 09W (IMBUDO)
15-25 JULY 2003

Intensity (kts)

Super Typhoon (STY) 09W (Imbudo)*

First Poor : 0600Z 14Jul 03
First Fair : 0600Z 15 Jul 03
First TCFA : 0930Z 16 Jul 03
First Warning: 1800Z 16 Jul 03
Last Warning: 1200Z 24 Jul 03
Max Intensity : 130 kts, gusts to 160 kts
Landfall : Yangjiang, China
Total Warnings : 32
Remarks:

1) Super Typhoon (STY) 09W was initially detected and monitored as an area of heavy convection very near Chuuk on 13 July 2003. Subsequently, another area of convection developed southwest of Chuuk around 15 July. For the next 48 hours this second area increased in organization and a first warning was issued by $1800 Z$ on 16 July. The cyclone began to rapidly organize and track northwest along the southwestern periphery of the mid-level steering ridge. Favorable upper tropospheric synoptic flow and warm sea temperatures allowed for a steady rate of intensification slightly greater than climatological. A period of rapid development caused by an increase in equatorward outflow and increased outflow towards a TUTT cell to the northeast occurred from 0000Z on 19 July to $1200 Z$ on 20 July resulted in an intensity increase of 2.5 Dvorak T-Numbers in just 36 hours.

The system then tracked northwest over Luzon, making landfall near 0300Z on 22 July with an estimated intensity of 110 knots and weakened only slightly over central Luzon. After emerging into the South China Sea, STY 09W tracked west-northwest at a rapid 15 knots and reintensified to 90 knots. The cyclone made landfall for a second time on the coast of China at approximately 0000 Z on 24 July with an intensity of 85 knots. STY 09W then weakened over land and dissipated within 24 hours.
2) International news agencies reported 21 persons killed in the Philippines and as many as 20 casualties were reported in southern China. In the Philippines, crop damages were estimated at \$37 million. In Southern China, reports indicated that several small coastal reservoirs were damaged, many homes damaged or destroyed and significant losses in livestock experienced in some locations.
*Named by WMO Designated RSMC

Statistics for JTWC on STY09W

Statistics for JTWC on STY09W																				
	WRN	BEST	TRACK			SIT	IION	ERR	ORS				WIN	ND	ERR	ORS				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03071500		3.6 N	150.0E	15																
03071506		3.6N	148.9E	15																
03071512		3.6 N	147.7E	15																
03071518		3.7 N	146.5E	15																
03071600		4.3 N	145.6E	20																
03071606		5.1 N	144.9E	20																
03071612		5.8 N	144.1E	20																
03071618	1	6.6 N	143.2E	25	33	73	113	161	205	253			0	5	-5	0	5	-5		
03071700	2	7.4 N	142.2E	30	8	48	101	148	173	204			0	0	0	5	10	15		
03071706	3	8.2N	141.1E	30	16	34	95	148	175	200			0	-5	-5	-5	-5	25		
03071712	4	8.8 N	140.2E	40	21	36	90	129	149	188	278	488	0	0	5	5	-5	35	30	15
03071718	5	9.3 N	139.4E	45	5	48	77	118	128	183	347	503	0	0	0	0	-5	35	25	5
03071800	6	9.7 N	138.6E	50	31	42	70	88	72	129	253	406	0	5	5	-5	15	40	20	5
03071806	7	9.9 N	137.7E	55	37	12	51	53	51	135	231	336	0	0	0	10	25	30	5	5
03071812	8	10.1 N	136.9E	55	8	30	43	47	82	174	299	385	0	0	10	15	40	30	15	5
03071818	9	10.4 N	136.1E	65	8	22	17	24	71	225	337	390	0	-5	15	30	40	15	25	40
03071900	10	10.4 N	135.3E	65	8	8	12	39	105	265	372	434	0	15	25	50	40	-5	25	20
03071906	11	10.5 N	134.6E	75	5	13	6	39	102	213	281	389	0	10	25	40	25	30	30	30
03071912	12	10.7 N	133.9E	85	11	17	18	60	117	234	296	361	10	20	45	35	25	30	5	35
03071918	13	11.1 N	133.2E	90	21	38	69	103	152	280	329	380	10	20	35	20	10	25	30	45
03072000	14	11.6 N	132.4E	100	13	41	82	112	168	304	314	402	10	25	15	-5	10	10	30	20
03072006	15	12.1 N	131.5E	110	0	30	75	110	173	271	316	501	5	0	10	20	45	35	-5	-10
03072012	16	12.6 N	130.5E	130	13	45	83	133	201	265	309	480	0	15	20	30	55	30	5	-10
03072018	17	13.1 N	129.4E	130	13	38	78	142	192	263	331		0	15	20	40	25	35	15	

03072100	18	13.7 N	128.2 E	130	5	23	75	151	218	259	374		0	5	0	20	-	0	15	
03072106	19	14.3 N	127.0 E	125	8	37	102	152	205	258	310		5	10	35	10	10	5	-	
15																				
03072112	20	15.0 N	125.8 E	125	0	29	87	143	179	238	266		5	15	20	10	20	5	-	10
03072118	21	15.7 N	124.4 E	120	5	42	92	149	181	249			10	30	0	15	5	-		15
03072200	22	16.4 N	123.0 E	115	5	46	100	128	137	239			15	10	15	5	0	-		
03072206	23	17.0 N	121.3 E	90	16	53	88	107	139	306			0	15	5	0	-	10	-5	

Figure 1-09W-1. $202025 Z$ July 2003 GOES-9 enhanced infrared imagery of STY 09W (Imbudo), the small eye was located 155 nm east of Luzon, Philippines in the south china sea at its peak intensity of 130 knots.

Figure 1-09W-2. $212206 Z$ July 2003 GOES-9 SSM/I color composite imagery of STY 09W (Imbudo), the system was undergoing a concentric eyewall cycle. Located 440 nm east southeast of Luzon, Philippines at its peak intensity of 130 knots.

Figure 1-09W-3. $230255 Z$ July 2003 MODIS true-color image of STY 09W (Imbudo), located in the South China Sea, with an intensity of 90 knots.

SUPER TYPHOON 09W (IMBUDO)

15-25.JULY 2003

Time Intensity for 09W

Typhoon (TY) 10W (Morakot)*

First Poor : N/A
First Fair : N/A
First TCFA : 1400Z 31 Jul 03
First Warning : 1200Z 01 Aug 03
Last Warning : 0000Z 05 Aug 03, Dissipated
Max Intensity : 65 kts, gusts to 80 kts
Landfall : T'aitung, Taiwan \& Quanzhou, China
Total Warnings : 15
Remarks:

1) Typhoon (TY) 10W was initially designated as a tropical disturbance in the Philippine Sea on 30 July, 2003, with a first warning issued at $1200 Z$ on 31 July. The system was classified as a tropical depression as it began to organize and track northwest along the western periphery of the mid-level steering ridge northeast of the system. Outflow associated with a col in the upper ridge axis permitted the cyclone to reach marginal typhoon strength just prior to landfall, at approximately 1500 Z on 03 August, on the southeast coast of Taiwan.

TY 10W weakened slightly before emerging in the Taiwan Strait near T'ainan, at approximately $1800 Z$ on 03 Aug. The cyclone then tracked west-northwestward under the influence of the building mid-level ridge to the east until making landfall for a second time, near Quanzhou, China, at approximately $1000 Z$ on 4 Aug with an estimated intensity of 55 knots. TY 10W dissipated in less than 12 hours.
2) Taiwan news agencies reported torrential rains and damaging mudslides but no fatalities. No fatality or significant damage reports were received for the Quanzhou region.
*Named by WMO designated RSMC

Statistics for JTWC on TY 10W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03073018		11.8 N	130.4E	20																
03073100		12.8 N	129.3E	20																
03073106		13.9 N	128.1E	20																
03073112		14.9 N	127.0E	20																
03073118		15.6 N	126.5E	20																
03080100		16.1 N	126.2E	25																
03080106		16.5 N	126.0E	25																
03080112	1	16.9 N	125.9E	30	29	53	78	92	144	240			0	0	0	0	-10	5		
03080118	2	17.4 N	125.8E	35	30	85	148	167	147	194			-5	-5	5	-10	5	35		
03080200	3	18.3 N	125.6E	35	8	58	113	105	102	177			0	0	5	0	15	10		
03080206	4	18.9N	124.9E	45	11	50	75	66	102				0	10	0	15	-5			
03080212	5	19.6N	124.1E	45	26	64	77	86	111				0	5	0	15	5			
03080218	6	20.4 N	123.2E	45	8	21	11	28	19				0	-10	-5	-5	5			
03080300	7	20.7N	122.1E	50	8	46	33	21	12				-5	-15	-10	0	20			
03080306	8	21.4 N	121.4E	65	12	71	80	62					0	5	-5	10				
03080312	9	22.4 N	121.1E	65	30	24	48	32					0	5	0	15				
03080318	10	22.8 N	120.5E	60	21	28	37						5	5	15					
03080400	11	23.3 N	119.7E	60	24	53	37						5	0	10					
03080406	12	24.1 N	119.1E	60	20	16							5	5						
03080412	13	24.8 N	118.4E	55	10	18							0	15						
03080418	14	25.2 N	117.9E	35	13								-5							
03080500	15	25.5 N	117.4E	30	20								-5							
			AVERAGE		18	45	67	73	91	204			2	6	5	8	9	17		
			BIAS										0	2	1	4	5	17		
			\# CASES		15	13	11	9	7	3			15	13	11	9	7	3		

Figure 1-10W-1. 030952 Z August 2003 GOES-9 85 GHz SSM/I imagery of TY 10W (Morakot), the large eye was located on the southern coast of Taiwan at its peak intensity of 65 knots.

TYPHOON 10W (MORAKOT)
 01-05 AUGUST 2003

Time Intensity for 10 W

Intensity (kts)

$$
\begin{aligned}
& \text { - KGWC } \\
& \text { - PGTW } \\
& \text { - KWBC } \\
& \text { - CIRA } \\
& \text { - ODT } \\
& \text { - OTHER } \\
& \text { - T-Numbers } \\
& \text { - Best Track }
\end{aligned}
$$

Typhoon (TY) 10W (Morakot)

First Poor: N/A
First Fair : N/A

First TCFA : 1400Z 31 Jul 03
First Warning : 1200Z 01 Aug 03
Last Warning : 0000Z 05 Aug 03, Dissipated
Max Intensity : 65 kts, gusts to 80 kts
Landfall : T'aitung, Taiwan \& Quanzhou, China
Total Warnings : 15
Remarks:

1) Typhoon (TY) 10W was initially designated as a tropical disturbance in the Philippine Sea on 30 July, 2003, with a first warning being issued at $1200 Z$ on 31 July. The system was classified as a tropical depression as it began to organize and track northwest along western periphery of the mid-level steering ridge northeast of the system. Outflow associated with a col in the upper ridge axis permitted the cyclone to reach marginal typhoon strength just prior to landfall, at approximately 1500 Z on 03 August, on the southeast coast of Taiwan.

Subsequently, TY 10W weakened slightly before emerging in the Taiwan Strait, near T'ainan, at approximately 1800 Z on 03 Aug. The cyclone then tracked west-northwestward under the influence of the building mid-level ridge to the east until making landfall for a second time, near Quanzhou, China, at approximately 1000 Z on 4 Aug with an estimated intensity of 55 knots and dissipated in less than 12 hours.
2) Taiwan news agencies reported torrential rains and damaging mudslides but no fatalities. No fatality or significant damage reports were received for the Quanzhou region.

Statistics for JTWC on TY 10W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03073018		11.8 N	130.4E	20																
03073100		12.8N	129.3E	20																
03073106		13.9 N	128.1E	20																
03073112		14.9N	127.0E	20																
03073118		15.6N	126.5E	20																
03080100		16.1 N	126.2E	25																
03080106		16.5N	126.0E	25																
03080112	1	16.9N	125.9E	30	29	53	78	92	144	240			0	0	0	0	-10	5		
03080118	2	17.4 N	125.8E	35	30	85	148	167	147	194			-5	-5	5	-10	5	35		
03080200	3	18.3 N	125.6E	35	8	58	113	105	102	177			0	0	5	0	15	10		
03080206	4	18.9 N	124.9E	45	11	50	75	66	102				0	10	0	15	-5			
03080212	5	19.6N	124.1E	45	26	64	77	86	111				0	5	0	15	5			
03080218	6	20.4 N	123.2E	45	8	21	11	28	19				0	-10	-5	-5	5			
03080300	7	20.7N	122.1E	50	8	46	33	21	12				-5	-15	-10	0	20			
03080306	8	21.4 N	121.4E	65	12	71	80	62					0	5	-5	10				
03080312	9	22.4 N	121.1E	65	30	24	48	32					0	5	0	15				
03080318	10	22.8 N	120.5E	60	21	28	37						5	5	15					
03080400	11	23.3 N	119.7E	60	24	53	37						5	0	10					
03080406	12	24.1 N	119.1E	60	20	16							5	5						
03080412	13	24.8 N	118.4E	55	10	18							0	15						
03080418	14	25.2 N	117.9E	35	13								-5							
03080500	15	25.5 N	117.4E	30	20								-5							
			AVERAGE		18	45	67	73	91	204			2	6	5	8	9	17		
			BIAS										0	2	1	4	5	17		
			\# CASES		15	13	11	9	7	3			15	13	11	9	7	3		

Figure 1-10W-1. 030952 Z August 2003 GOES-9 85 GHz SSM/I imagery of TY 10W (Morakot), the large eye was located on the southern coast of Taiwan at its peak intensity of 65 knots.

TYPHOON 10W (MORAKOT)
01-05 AUGUST 2003

Time Intensity for 10W
Intensity (kts)

Typhoon (TY) 11W (Etau)*

First Poor : 0600Z 30 Jul 03
First Fair : $2330 Z 31$ Jul 03
First TCFA : $2230 Z 01$ Aug 03
First Warning : 0000Z 02 Aug 03
Last Warning : $1800 Z 09$ Aug 03, Extratropical
Max Intensity : 110 kts, gusts to 135 kts
Landfall : Multiple Events
Total Warnings : 28
Remarks:

1) Typhoon (TY) 11 W developed approximately 140 nm northwest of Chuuk on 31 July, 2003. The first warning was issued at $0000 Z$ on 02 August. The cyclone remained a tropical depression for the first 24 hours and then rapidly developed at greater than a Dvorak T-number per day over the next 48 hours as a result of of the presence of dual outflow channels. In addition to synoptic equatorward outflow, an upper level cyclone to the northeast provided the second enhanced outflow path.

TY 11 W tracked steadily northwestward along the subtropical ridge located east of Japan for the first 96 hours. The cyclone then turned poleward and tracked over Naha, Okinawa at 0000Z on August 7 while at peak intensity of 110 knots. Available synoptic reports from Kadena, Okinawa estimated surface winds at 60 knots gusting to 98 knots just prior to eyewall passage. The lowest pressure reported for this cyclone was 949 mb over Naze, Amami O Shima.

TY 11W maintained 110 knot intensity for approximately 18 hours while tracking northeastward along the northwest periphery of the subtropical ridge. After TY 11W tracked over the Ryukus Island chain, it began to slowly weaken as it encountered increasing vertical wind shear, cool air and the mountainous terrain of Shikoku and Honshu. The cyclone transitioned into an extra-tropical cyclone just north of Misawa, Japan and was subsequently finaled.
2) Reports indicated 10 fatalities, 10 injuries and 11 missing persons in Japan resulting from heavy rains and landslides. Other damage reports indicated there were grounded flights, disrupted train

service, and loss of power to 22,500 homes in mainland Japan.

*Named by WMO Designated RSMC

Statistics for JTWC on TY11W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03073106		8.6 N	150.1E	15																
03073112		8.6 N	149.0E	15																
03073118		8.6 N	148.0E	15																
03080100		8.6 N	147.1E	15																
03080106		8.6 N	146.3E	15																
03080112		8.7N	145.3E	20																
03080118		9.1 N	144.4E	20																
03080200		9.7 N	143.5E	25																
03080206		10.2 N	142.4E	25																
03080212		10.9 N	141.5E	25																
03080218		11.6 N	140.7E	25																
03080300	1	12.4 N	139.9E	30	0	8	59	120	120	127			-5	-10	-10	-5	-20	30		
03080306	2	13.2 N	139.1E	35	0	24	97	166	207	216	298	377	0	0	0	0	-5	5	-35	35
03080312	3	14.0 N	138.6E	45	5	64	150	188	215	219	230	256	0	0	15	0	10	20	-5	-15
03080318	4	14.9 N	137.8E	45	18	86	133	178	208	207	327	389	0	15	25	25	25	20	-5	5
03080400	5	15.7 N	136.6E	55	13	81	107	143	169	205	265	320	0	20	15	20	20	10	-10	-5
03080406	6	16.4 N	135.3 E	55	16	19	70	107	130	144	289	384	0	10	10	10	15	10	-40	10
03080412	7	17.1 N	134.0E	55	0	36	73	75	75	146	255	420	0	-10	0	0	10	10	-35	5
03080418	8	17.7 N	133.2E	65	12	37	70	85	93	130	170	87	5	10	15	25	25	5	-35	10
03080500	9	18.3 N	132.3E	80	0	25	33	30	65	61	227	177	5	15	20	35	15	0	-20	15
03080506	10	18.8 N	131.5E	80	0	17	28	44	77	39	200		5	25	20	30	15	10	5	
03080512	11	19.5 N	130.8E	85	13	37	45	76	64	63	92		0	5	25	20	15	10	0	
03080518	12	20.6 N	130.0E	90	5	21	24	49	37	144			0	10	20	15	-5	-30		
03080600	13	21.7 N	129.3E	95	0	13	22	20	19	147			0	15	15	5	-10	-20		

| 03080606 | 14 | 22.9 N | 128.8 E | 95 | 0 | 6 | 16 | 26 | 20 | 228 | | | 0 | 10 | 15 | 5 | 5 | -10 | | |
| :--- |
| 03080612 | 15 | 24.1 N | 128.6 E | 95 | 8 | 25 | 24 | 12 | 82 | 211 | | | 0 | 0 | 0 | -10 | -15 | -10 | | |
| 03080618 | 16 | 25.3 N | 128.4 E | 100 | 0 | 22 | 16 | 18 | 71 | 105 | | | 0 | 5 | 5 | 15 | -5 | 5 | | |
| 03080700 | 17 | 26.5 N | 128.2 E | 110 | 0 | 29 | 32 | 12 | 36 | 147 | | | 0 | 5 | 10 | 15 | 0 | 5 | | |
| 03080706 | 18 | 27.4 N | 128.5 E | 110 | 5 | 27 | 35 | 54 | 170 | | | | 0 | 10 | 15 | -20 | -10 | | | |
| 03080712 | 19 | 28.3 N | 129.5 E | 110 | 5 | 32 | 37 | 43 | 103 | | | | 0 | 0 | -10 | -25 | -5 | | | |
| 03080718 | 20 | 29.3 N | 130.8 E | 105 | 0 | 32 | 24 | 53 | 89 | | | | 0 | 0 | -10 | -5 | 10 | | | |
| 03080800 | 21 | 30.7 N | 132.0 E | 100 | 0 | 25 | 51 | 84 | 110 | | | | 0 | 0 | -5 | -5 | 10 | | | |
| 03080806 | 22 | 32.0 N | 133.0 E | 90 | 5 | 23 | 57 | 42 | | | | | 0 | 0 | 0 | 5 | | | | |
| 03080812 | 23 | 33.2 N | 134.0 E | 90 | 5 | 28 | 20 | 60 | | | | | 0 | -15 | -10 | 15 | | | | |
| 03080818 | 24 | 34.4 N | 134.9 E | 80 | 4 | 43 | 25 | | | | | | 0 | 5 | 10 | | | | | |
| 03080900 | 25 | 35.5 N | 136.2 E | 65 | 0 | 37 | 76 | | | | | | 0 | 0 | 15 | | | | | |
| 03080906 | 26 | 36.8 N | 138.3 E | 45 | 12 | 44 | | | | | | | 0 | 15 | | | | | | |
| 03080912 | 27 | 38.9 N | 140.7 E | 45 | 5 | 117 | | | | | | | 0 | 20 | | | | | | |
| 03080918 | 28 | 41.2 N | 143.3 E | 30 | 7 | | | | | | | | 0 | | | | | | | |
| 03081000 | | 43.6 N | 147.1 E | 25 | | | | | | | | | | | | | | | | |
| | | | AVERA | GE | 5 | 35 | 53 | 73 | 103 | 149 | 235 | 301 | 1 | 9 | 12 | 13 | 12 | 12 | 19 | 13 |
| | | | BIAS | | | | | | | | | | 0 | 6 | 8 | 7 | 5 | 1 | -18 | -1 |
| | \# CAS | ES | 28 | 27 | 25 | 23 | 21 | 17 | 10 | 8 | 28 | 27 | 25 | 23 | 21 | 17 | 10 | 8 | | |

Figure 1-11W-1. $062213 Z$ August 2003 GOES-9 visible imagery of TY 11W (Etau), located 45 nm southeast of Okinawa, Japan at its peak intensity of 110 knots.

Figure 1-11W-2. $071116 Z$ August 2003 GOES-9 85 GHz SSM/I imagery of TY 11W (Etau), located on over Amami Shima island, Japan at its peak intensity of 110 knots.

Figure 1-11W-3. $080425 Z$ August 2003 MODIS true-color image of TC 11W (Etau), located off the Japanese coast, with an intensity of 90 knots.

TYPHOON 11W (ETAU)

31 JULY - 09 AUGUST 2003

- KGWC
- PGTW
- KWBC
CIRA
- ODT
- T-Numbers
- Best Track

Fix Date (Zulu)

Typhoon (TY) 11W (Etau)*

First Poor : 0600Z 30 Jul 03
First Fair : 2330Z 31 Jul 03
First TCFA : $2230 Z 01$ Aug 03
First Warning : 0000Z 02 Aug 03
Last Warning : 1800Z 09 Aug 03, Extratropical
Max Intensity : 110 kts, gusts to 135 kts
Landfall : Multiple Events
Total Warnings : 28
Remarks:

1) Typhoon (TY) 11W initially developed approximately 140 nm northwest of Chuuk on 31 July, 2003. The first warning was issued at 0000 Z on 02 August. The cyclone remained a tropical depression for the first 24 hours and then rapidly developed at greater than a Dvorak T-number per day over the next 48 hours as a result of of the presence of dual outflow channels. In addition to synoptic equatorward outflow, an upper level cyclone to the northeast provided the second enhanced outflow path.

TY 11W tracked steadily northwestward along the subtropical ridge located east of Japan for the first 96 hours. The cyclone then turned poleward and tracked over Naha, Okinawa at 0000Z on August 7 while at peak intensity of 110 knots. Available synoptic reports from Kadena, Okinawa estimated surface winds at 60 knots gusting to 98 knots just prior to eyewall passage. The lowest pressure reported for this cyclone was 949 mb over Naze, Amami O Shima.

TY 11W maintained 110 knot intensity for approximately 18 hours while tracking northeastward along the northwest periphery of the subtropical ridge. After TY 11W tracked over the Ryukus Island chain, it began to slowly weaken as it encountered increasing vertical wind shear, cool air and the mountainous terrain of Shikoku and Honshu. The cyclone transitioned into an extra-tropical cyclone just north of Misawa, Japan and was subsequently finaled.
2) Reports indicated 10 fatalities, 10 injuries and 11 missing persons in Japan resulting from heavy rains and landslides. Other damage reports indicated there were grounded flights, disrupted train service, and loss of power to 22,500 homes in mainland Japan.
*Named by WMO Designated RSMC

Figure 1-11W-1. 062213 Z August 2003 GOES-9 visible imagery of TY 11W (Etau), located 45 nm southeast of Okinawa, Japan at its peak intensity of 110 knots.

Figure 1-11W-2. 071116Z August 2003 GOES-9 85 GHz SSM/I imagery of TY 11W (Etau), located on over Amami Shima island, Japan at its peak intensity of 110 knots.

Figure 1-11W-3. 080425Z August 2003 MODIS true-color image of TC 11W (Etau), located off the Japanese coast, with an intensity of 90 knots.

TYPHOON 11W (ETAU)
31 JULY - 09 AUGUST 2003

Time Intensity for 11W
Intensity (kts)

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03073106		8.6 N	150.1E	15																
03073112		8.6N	149.0E	15																
03073118		8.6 N	148.0E	15																
03080100		8.6 N	147.1E	15																
03080106		8.6 N	146.3E	15																
03080112		8.7 N	145.3E	20																
03080118		9.1 N	144.4E	20																
03080200		9.7 N	143.5E	25																
03080206		10.2 N	142.4E	25																
03080212		10.9N	141.5E	25																
03080218		11.6N	140.7E	25																
03080300	1	12.4 N	139.9E	30	0	8	59	120	120	127			-5	-10	-10	-5	-20	-30		
03080306	2	13.2 N	139.1E	35	0	24	97	166	207	216	298	377	0	0	0	0	-5	5	-35	-35
03080312	3	14.0N	138.6E	45	5	64	150	188	215	219	230	256	0	0	15	0	10	20	-5	-15
03080318	4	14.9 N	137.8E	45	18	86	133	178	208	207	327	389	0	15	25	25	25	20	-5	5
03080400	5	15.7 N	136.6E	55	13	81	107	143	169	205	265	320	0	20	15	20	20	10	-10	-5
03080406	6	16.4 N	135.3E	55	16	19	70	107	130	144	289	384	0	10	10	10	15	10	-40	10
03080412	7	17.1 N	134.0E	55	0	36	73	75	75	146	255	420	0	-10	0	0	10	10	-35	5
03080418	8	17.7 N	133.2E	65	12	37	70	85	93	130	170	87	5	10	15	25	25	5	-35	10
03080500	9	18.3N	132.3E	80	0	25	33	30	65	61	227	177	5	15	20	35	15	0	-20	15
03080506	10	18.8 N	131.5E	80	0	17	28	44	77	39	200		5	25	20	30	15	10	5	
03080512	11	19.5N	130.8E	85	13	37	45	76	64	63	92		0	5	25	20	15	10	0	
03080518	12	20.6 N	130.0E	90	5	21	24	49	37	144			0	10	20	15	-5	-30		
03080600	13	21.7 N	129.3E	95	0	13	22	20	19	147			0	15	15	5	-10	-20		
03080606	14	22.9 N	128.8E	95	0	6	16	26	20	228			0	10	15	5	5	-10		
03080612	15	24.1 N	128.6E	95	8	25	24	12	82	211			0	0	0	-10	-15	-10		
03080618	16	25.3 N	128.4E	100	0	22	16	18	71	105			0	5	5	15	-5	5		
03080700	17	26.5N	128.2E	110	0	29	32	12	36	147			0	5	10	15	0	5		
03080706	18	27.4 N	128.5E	110	5	27	35	54	170				0	10	15	-20	-10			
03080712	19	28.3 N	129.5E	110	5	32	37	43	103				0	0	-10	-25	-5			
03080718	20	29.3 N	130.8E	105	0	32	24	53	89				0	0	-10	-5	10			
03080800	21	30.7 N	132.0E	100	0	25	51	84	110				0	0	-5	-5	10			
03080806	22	32.0 N	133.0E	90	5	23	57	42					0	0	0	5				
03080812	23	33.2 N	134.0E	90	5	28	20	60					0	-15	-10	15				

03080818	24	34.4 N	134.9 E	80	4	43	25							0	5	10					
03080900	25	35.5 N	136.2 E	65	0	37	76							0	0	15					

First Poor : N/A
First Fair : 2300Z 13 Aug 03
First TCFA : $2030 Z 14$ Aug 03
First Warning : 0600Z 15 Aug 03
Last Warning : 0000Z 26 Aug 03; Dissipated over land
Max Intensity : 90 kts, gusts to 110 kts
Landfall : Cam Pha, China
Total Warnings : 40
Remarks:

1) Typhoon (TY) 12 W developed in the monsoon trough approximately 200 nm east of Chuuk on 13 Aug, 2003 and the first warning was issued at $0600 Z$ on 15 August. This cyclone remained a tropical depression until 20 August as it tracked northwestward in response to flow from a mid-level steering ridge centered to the northeast. TY 12W rapidly developed and moved more southwest over the next 24 hours, achieving typhoon strength by $0600 Z$ on 21 August.

Subsequently, TY 12W tracked westward along the southern periphery of sub-tropical ridge to the north until dissipation. The cyclone achieved peak intensity of 90 knots around 0000Z on 22 August prior to making landfall, for the first time, north of Palanan, Philippines. TY 12W weakened to approximately 70 knots as it tracked across Luzon, then began moving over the South China Sea at approximately 2000 Z on 22 August.

TY 12W steadily intensified over the next three days as it moved west-northwestward and passed between Hainan Island and the Luichow Peninsula, China around 0000Z on 25 August. TY 12W reintensified to 90 knots around $0600 Z$ on 25 August while moving through the Gulf of Tonkin, and made landfall at approximately 1500 Z on 25 August just north of Cam Pha, Vietnam and dissipated inland.
2) Reports indicated that the Hainan provincial capital city of Haikou lost electricity in many locations. Reports further indicate that five people were hospitalized in Hong Kong and numerous airline flights in the region were delayed.
*Named by WMO Designated RSMC

Statistics for JTWC on TY12W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03081400		7.0N	155.4E	20																
03081406		7.4 N	154.4E	20																
03081412		8.0 N	153.4E	20																
03081418		8.7 N	152.4E	20																
03081500		9.2 N	151.4E	20																
03081506	1	9.6 N	150.7E	25	43	71	79	64	49	162			0	10	15	20	30	40		
03081512	2	10.0 N	150.1E	25	24	42	56	66	102	151			0	5	15	20	25	35		
03081518	3	10.4 N	149.5E	25	0	0	55	77	123	170	232	286	0	5	15	20	25	35	40	35
03081600	4	10.8 N	148.9E	25	13	67	101	138	178	233	266	213	0	5	10	15	25	35	30	-10
03081606	5	11.6 N	148.0E	25	0	50	71	94	131	190			0	5	10	20	25	30		
03081612	6	12.5 N	147.0E	25	24	52	76	104	127	171			0	5	10	20	25	30		
03081618	7	13.3 N	145.9E	25	34	61	72	104	149	175	256	423	0	5	10	20	25	30	45	35
03081700	8	13.7 N	144.8E	25	16	13	17	67	70	111	252	376	0	5	15	20	30	40	-5	20
03081706	9	14.2 N	143.7E	25	25	61	87	98	128	120			0	0	10	15	20	25		
03081712	10	15.2 N	142.8E	25	32	66	50	80	87	138			0	0	0	0	-5	25		
03081718	11	16.1 N	141.9E	25	45	76	98	166	144	149			0	0	0	-5	-5	25		
03081800	12	17.0N	140.9E	25	11	47	64						0	0	-5					
03081906	13	20.3 N	135.4E	30	36	79	125	172	164	179			0	5	10	5	10	$\overline{-}$		
03081912	14	20.3 N	134.3E	30	22	50	126	146	159	173			0	5	0	10	10	-		
03081918	15	20.2 N	133.5E	30	8	80	162	183	249	297			0	0	-5	20	25	- 10		
03082000	16	20.0 N	132.7E	30	30	119	157	193	242	326			0	10	20	20	- 40	15		
03082006	17	19.5N	132.1E	35	29	68	72	126	142	202	252	342	0	-5	- 20	25	-	10	- 15	-20

03082012	18	19.0 N	131.4E	45	6	40	46	59	67	231	396	570	-5	15	15	35	20	15	20	-20
03082018	19	18.7 N	130.4E	45	5	28	55	85	145	198	339	569	0	-5	-5	15	10	10	30	-25
03082100	20	18.6 N	129.3E	60	6	19	51	84	158	206	354	582	0	5	10	5	10	5	25	-20
03082106	21	18.5 N	128.2E	65	8	49	72	142	173	209	358		0	0	-5	10	10	0	45	
03082112	22	18.2 N	127.1E	65	0	38	59	105	118	157	260		0	10	0	5	5	10	50	
03082118	23	17.8 N	125.9E	75	8	18	72	77	85	170	396		0	-5	5	5	10	40	45	
03082200	24	17.7N	124.5E	90	6	8	46	59	61	151	412		0	0	5	10	10	35	30	
03082206	25	17.7N	123.3E	90	22	42	42	42	61	185			0	5	10	15	5	45		
03082212	26	17.6N	122.1E	80	0	60	62	46	62	152			0	10	15	10	0	50		
03082218	27	17.1 N	120.6E	70	12	17	13	18	34	96			0	10	15	10	10	-5		
03082300	28	17.5 N	119.2E	70	13	26	24	49	56	148			0	10	10	5	-5	$\overline{10}$		
03082306	29	17.6 N	117.9E	70	0	0	6	25	54				0	10	10	10	- 40			
03082312	30	17.9 N	116.8E	70	11	27	12	8	19				0	5	0	20	- 40			
03082318	31	18.3 N	115.8E	70	13	29	26	39	58				0	-5	$\overline{20}$	- 35	- 20			
03082400	32	18.8 N	114.7E	75	12	34	41	59	96				0	-5	10	30	15			
03082406	33	19.2 N	113.4E	80	0	12	31	62					0	0	- 25	- 3				
03082412	34	19.6 N	112.2E	85	8	11	21	29					0	15	- 40	25				
03082418	35	20.0N	111.1E	85	6	6	25						0	20	- 15					
03082500	36	20.4 N	110.0E	80	12	38	84						0	25	10					
03082506	37	20.8 N	108.9E	90	0	29							0	-5						
03082512	38	21.2 N	107.8E	90	5	13							0	0						
03082518	39	21.5 N	106.7E	65	11								0							
03082600	40	22.3 N	105.2E	50	16								0							
			AVERAGE		15	41	63	87	113	180	314	420	0	6	11	16	18	24	32	23

			BIAS										0	0	0	-1	0	-1	-	13

Figure 1-12W-1. $220353 Z$ August 2003 SSMI/GOES-9 visible imagery of TY 12W (Krovanh), located 110 nm east of Luzon, Philippines prior to landfall at its peak intensity of 90 knots.

Figure 1-12W-2. 240300 Z January 2003 MODIS true-color image of TY 12W (Krovanh), located in the South China Sea, with an intensity of 75 knots.

TYPHOON 12W (KROVANH)

Time Intensity for 12 W
Intensity (kts)

Typhoon (TY) 12W (Krovanh)*

First Poor : N/A

First Fair : 2300Z 13 Aug 03
First TCFA : 2030Z 14 Aug 03

First Warning : 0600Z 15 Aug 03
Last Warning : 0000Z 26 Aug 03; Dissipated over land
Max Intensity : 90 kts, gusts to 110 kts
Landfall : Cam Pha, China

Total Warnings : 40
Remarks:

1) Typhoon (TY) 12W developed in the monsoon trough approximately 200 nm east of Chuuk on 13 Aug, 2003 and the first warning was issued at $0600 Z$ on 15 August. This cyclone remained a tropical depression until 20 August as it tracked northwestward in response to flow from a mid-level steering ridge centered to the northeast. TY 12W rapidly developed and moved more southwest over the next 24 hours, achieving typhoon strength by $0600 Z$ on 21 August.

Subsequently, TY 12W tracked westward along the southern periphery of sub-tropical ridge to the north until dissipation. The cyclone achieved peak intensity of 90 knots around 0000Z on 22 August prior to making landfall, for the first time, north of Palanan, Philippines. TY 12W weakened to approximately 70 knots as it tracked across Luzon, then began moving over the South China Sea at approximately 2000 Z on 22 August.

TY 12W steadily intensified over the next three days as it moved west-northwestward and passed between Hainan Island and the Luichow Peninsula, China around 0000Z on 25 August. TY 12W reintensified to 90 knots around $0600 Z$ on 25 August while moving through the Gulf of Tonkin, and made landfall at approximately $1500 Z$ on 25 August just north of Cam Pha, Vietnam and dissipated inland.
2) Reports indicated that the Hainan provincial capital city of Haikou lost electricity in many locations. Reports further indicate that five people were hospitalized in Hong Kong and delays to numerous airline flights in the region.
*Named by WMO Designated RSMC

Statistics for JTWC on TY12W

Statistics for JTWC on TY12W																				
	WRN	BEST	TRACK			SITIO	ON E	RRR	RS					ND	ER	ROR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03081400		7.0N	155.4E	20																
03081406		7.4 N	154.4E	20																
03081412		8.0 N	153.4E	20																
03081418		8.7 N	152.4E	20																
03081500		9.2 N	151.4E	20																
03081506	1	9.6 N	150.7E	25	43	71	79	64	49	162			0	10	15	20	30	40		
03081512	2	10.0 N	150.1E	25	24	42	56	66	102	151			0	5	15	20	25	35		
03081518	3	10.4 N	149.5E	25	0	0	55	77	123	170	232	286	0	5	15	20	25	35	40	35
03081600	4	10.8 N	148.9E	25	13	67	101	138	178	233	266	213	0	5	10	15	25	35	30	-10
03081606	5	11.6 N	148.0E	25	0	50	71	94	131	190			0	5	10	20	25	30		
03081612	6	12.5 N	147.0E	25	24	52	76	104	127	171			0	5	10	20	25	30		
03081618	7	13.3 N	145.9E	25	34	61	72	104	149	175	256	423	0	5	10	20	25	30	45	35
03081700	8	13.7 N	144.8E	25	16	13	17	67	70	111	252	376	0	5	15	20	30	40	-5	-20
03081706	9	14.2N	143.7E	25	25	61	87	98	128	120			0	0	10	15	20	25		
03081712	10	15.2 N	142.8E	25	32	66	50	80	87	138			0	0	0	0	-5	25		
03081718	11	16.1 N	141.9E	25	45	76	98	166	144	149			0	0	0	-5	-5	25		
03081800	12	17.0N	140.9E	25	11	47	64						0	0	-5					
03081906	13	20.3 N	135.4E	30	36	79	125	172	164	179			0	5	10	5	10	30		
03081912	14	20.3 N	134.3E	30	22	50	126	146	159	173			0	5	0	10	10	15		
03081918	15	20.2N	133.5E	30	8	80	162	183	249	297			0	0	-5	- 20	25	10		
03082000	16	20.0N	132.7E	30	30	119	157	193	242	326			0	10	- 20	- 20	40	- 15		
03082006	17	19.5N	132.1E	35	29	68	72	126	142	202	252	342	0	-5	20	-	35	10	- 15	-20
03082012	18	19.0N	131.4E	45	6	40	46	59	67	231	396	570	-5	- 15	15	- 35	20	15	20	-20
03082018	19	18.7N	130.4E	45	5	28	55	85	145	198	339	569	0	-5	-5	15	10	10	- 30	-25
03082100	20	18.6N	129.3E	60	6	19	51	84	158	206	354	582	0	5	- 10	5	10	5	- 25	-20

03082106	21	18.5 N	128.2E	65	8	49	72	142	173	209	358		0	0	-5	10	10	0	45	
03082112	22	18.2 N	127.1E	65	0	38	59	105	118	157	260		0	10	0	5	5	10	50	
03082118	23	17.8N	125.9E	75	8	18	72	77	85	170	396		0	-5	5	5	10	40	45	
03082200	24	17.7 N	124.5E	90	6	8	46	59	61	151	412		0	0	5	10	10	35	30	
03082206	25	17.7N	123.3E	90	22	42	42	42	61	185			0	5	10	15	5	45		
03082212	26	17.6N	122.1E	80	0	60	62	46	62	152			0	10	15	10	0	50		
03082218	27	17.1 N	120.6E	70	12	17	13	18	34	96			0	10	15	10	10	-5		
03082300	28	17.5 N	119.2E	70	13	26	24	49	56	148			0	10	10	5	-5	10		
03082306	29	17.6N	117.9E	70	0	0	6	25	54				0	10	10	- 10	40			
03082312	30	17.9 N	116.8E	70	11	27	12	8	19				0	5	0	20	- 40			
03082318	31	18.3 N	115.8E	70	13	29	26	39	58				0	-5	20	35	20			
03082400	32	18.8 N	114.7E	75	12	34	41	59	96				0	-5	10	30	15			
03082406	33	19.2N	113.4E	80	0	12	31	62					0	0	25	35				
03082412	34	19.6 N	112.2E	85	8	11	21	29					0	15	40	25				
03082418	35	20.0 N	111.1E	85	6	6	25						0	20	15					
03082500	36	20.4 N	110.0E	80	12	38	84						0	25	10					
03082506	37	20.8 N	108.9E	90	0	29							0	-5						
03082512	38	21.2 N	107.8E	90	5	13							0	0						
03082518	39	21.5 N	106.7E	65	11								0							
03082600	40	22.3 N	105.2E	50	16								0							
			AVERAGE		15	41	63	87	113	180	314	420	0	6	11	16	18	24	32	23
			BIAS										0	0	0	-1	0	-1	- 13	-6
			\# CASES		40	38	36	33	31	27	12	8	40	38	36	33	31	27	12	8

Figure 1-12W-1. $220353 Z$ August 2003 SSMI/GOES-9 visible imagery of TY 12W (Krovanh), located 110 nm east of Luzon, Philippines prior to landfall at its peak intensity of 90 knots.

Figure 1-12W-2. 240300Z January 2003 MODIS true-color image of TY 12W (Krovanh), located in the South China Sea, with an intensity of 75 knots.

TYPHOON 12W (KROVANH)

15-26 AUGUST 2003

Time Intensity for 12W

Intensity (kts)

Tropical Storm (TS) 13W (Vamco)*

First Poor : $2130 Z$ 17Aug 03
First Fair : 0600Z 18 Aug 03
First TCFA : 0000Z 19 Aug 03
First Warning : 0000Z 19 Aug 03
Last Warning : $1200 Z 20$ Aug 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : Fanshan, China
Total Warnings : 07
Remarks:
(1) The tropical disturbance that became the short-lived Tropical Storm (TS) 13W was first detected off the east coast of Luzon as a disturbance in the monsoon trough. This disturbance intensified, lifted northward out of the monsoon trough at 3 to 4 knots and consolidated into a depression, with the first warning being issued on 19 August at 0000Z. As the cyclone tracked northward and increased slowly in intensity, a low to mid level ridge to the northeast caused the cyclone to move more northwestward and accelerate towards mainland China. Continuous moderate vertical shear prevented the cyclone from intensifying into more than a weak tropical storm. The final warning for TS 13W was issued on 20 August at 1200Z, approximately 11 hours after landfall near Fanshan, China, where the cyclone rapidly dissipated over land.
2) No damage reports were received for this cyclone.
*Named by WMO Designated RSMC

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03081818		18.8N	125.2E 20																	
03081900	1	20.8N	125.4E 25	50	171	272	360					0	0	0	20					
03081906	2	22.8 N	124.8E 30	0	62	126	211					0	0	20	15					
03081912	3	24.3N	123.4E 30	6	36	146						0	5	10						
03081918	4	25.8 N	122.2E 35	17	69	104						0	15	10						
03082000	5	27.2N	120.9E 35	16	34							0	5							
03082006	6	28.3 N	119.5E 25	0	19							0	0							
03082012	7	29.8N	118.3E 20	0								0								
03082018		30.5 N	117.5E 20																	
			AVERAGE	13	65	162	285					0	4	10	18					
			BIAS									0	4	10	18					
			\# CASES	7	6	4	2					7	6	4	2					

Figure 1-13W-1. 190931Z August 2003 GOES-9 multi-sensor satellite imagery of TY 13W (Vamco), located 180 nm east of Taiwan at its peak intensity of 35 knots.

TROPICAL STORM 13W (VAMCO)
 19-20 AUGUST 2003

Time Intensity for 13W

Intensity (kts)

Fix Date (Zulu)

Tropical Storm (TS) 13W (Vamco)*

First Poor : $2130 Z$ 17Aug 03
First Fair : 0600Z 18 Aug 03

First TCFA : 0000Z 19 Aug 03
First Warning : 0000Z 19 Aug 03
Last Warning : 1200Z 20 Aug 03, Dissipated

Max Intensity : 35 kts, gusts to 45 kts
Landfall : Fanshan, China
Total Warnings : 07
Remarks:
(1) The tropical disturbance that became the short-lived Tropical Storm (TS) 13W was first detected off the east coast of Luzon as a disturbance in the monsoon trough. This disturbance intensified, lifted northward out of the monsoon trough at 3 to 4 knots and consolidated into a depression, with the first warning being issued on 19 August at 0000Z. As the cyclone tracked northward and increased slowly in intensity, a low to mid level ridge to the northeast caused the cyclone to move more northwestward and accelerate towards mainland China. Continuous moderate vertical shear prevented the cyclone from intensifying into more than a weak tropical storm. The final warning for TS 13W was issued on 20 August at 1200Z, approximately 11 hours after landfall near Fanshan, China, where the cyclone rapidly dissipated over land.
2) No damage reports were received for this cyclone.
*Named by WMO Designated RSMC

Statistics for JTWC on TS13W																				
	WRN	BEST T	TRACK		POS	ITIO	N ER	RO						ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03081818		18.8 N	125.2E 20																	
03081900	1	20.8N	125.4E 25	50	171	272	360					0	0	0	20					
03081906	2	22.8 N	124.8E 30	0	62	126	211					0	0	20	15					
03081912	3	24.3N	123.4E 30	6	36	146						0	5	10						
03081918	4	25.8 N	122.2E 35	17	69	104						0	15	10						
03082000	5	27.2N	120.9E 35	16	34							0	5							
03082006	6	28.3 N	119.5E 25	0	19							0	0							
03082012	7	29.8N	118.3E 20	0								0								
03082018		30.5 N	117.5E 20																	
			AVERAGE	13	65	162	285					0	4	10	18					
			BIAS									0	4	10	18					
			\# CASES	7	6	4	2					7	6	4	2					

Figure 1-13W-1. 190931Z August 2003 GOES-9 multi-sensor satellite imagery of TY 13W (Vamco), located 180 nm east of Taiwan at its peak intensity of 35 knots.

TROPICAL STORM 13W (VAMCO)

19-20 AUGUST 2003

Time Intensity for 13W
Intensity (kts)

Fix Date (Zulu)

Typhoon (TY) 14W (Dujuan)*

First Poor : 0600Z 27 Aug 03
First Fair : 2300Z 27 Aug 03
First TCFA : 0000Z 28 Aug 03
First Warning : 0600Z 28 Aug 03
Last Warning : 0000Z 03 Sep 03, Dissipated
Max Intensity : 125 kts, gusts to 145 kts
Landfall : China, East of Hong Kong
Total Warnings : 24
Remarks:
(1) Typhoon (TY) 14W developed in the Philippine Sea, approximately 280 nm northwest of Guam, on 27 August 2003. TY 14 W tracked southwestward for about 30 hours, under the influence of low to mid-level steering flow associated with a ridge to the north. From 0600 Z on 29 August to 0600 Z on 30 August, TY 14 W underwent rapid intensification (2 Dvorak T-numbers) due to an upper level low northwest of the system which enhanced poleward outflow.

After 0000 Z on 30 August, a mid-level ridge building eastward from Asian produced a northwestward track change, followed by a westward track change toward Hong Kong. Track speed also increased to 12 to 15 knots and intensification during this period was near the climatological mean of 1 Dvorak T-number/day.

By $2200 Z$ on 31 August, microwave imagery indicated the presence of a concentric eyewalls and the cyclone attained maximum intensity of 125 knots shortly thereafter. TY 14W then slowly weakened as it tracked toward China and made landfall at typhoon strength around 1500 Z on 02 September, just east of Hong Kong. The cyclone then rapidly decreased in intensity over China and the final warning was issued at $0000 Z$ on 03 September.
(2) TY 14 W passed 25 nm south of Taiwan, with an intensity of 120 knots on 01 September. Reports from Taiwan indicated rain and wind damage, flooding, and one missing person. Hong Kong shut the airport down during storm passage. Subsequent reports indicate 36 fatalities and 10 missing from areas near Hong Kong.

*Named by WMO designated RSMC

Statistics for JTWC on TY 14W

	WRN BEST TRACK			wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03082712		19.6 N	139.0E	25																
03082718		19.0N	138.4E	25																
03082800		18.4 N	138.1E	25																
03082806	1	17.6 N	137.5E	30	0	32	42	69	110	135			0	5	15	0	10	20		
03082812	2	16.8 N	136.7E	35	5	19	50	79	146	181	156	347	0	10	10	-5	0	15	40	-10
03082818	3	16.5 N	136.0E	35	12	30	71	108	160	144	197	408	0	10	-5	10	10	25	40	20
03082900	4	16.3N	135.5E	35	16	37	82	104	127	134	254	462	0	0	15	15	15	50	45	40
03082906	5	16.1 N	135.1E	35	13	47	52	62	54	102	206	318	0	15	25	20	25	45	25	55
03082912	6	16.0 N	134.8E	45	42	94	126	125	103	140	254		0	-5	0	10	0	20	5	
03082918	7	16.0N	134.6E	60	46	64	83	97	93	173	289		0	10	20	15	10	-5	45	
03083000	8	16.1 N	134.3E	70	0	48	91	140	148	272	385		0	20	25	15	10	-5	70	
03083006	9	16.7 N	133.7E	75	5	32	62	92	135	245	329		0	10	25	10	10	10	60	
03083012	10	17.6 N	133.1E	75	8	34	80	93	160	226			0	10	5	15	20	15		
03083018	11	18.4 N	132.2E	80	0	23	46	67	86	156			0	-5	-5	- 20	-	5		
03083100	12	19.2 N	131.1E	80	0	33	51	74	90	208			0	10	25	25	30	25		
03083106	13	19.8N	129.6E	90	0	30	45	73	88	188			0	-5	- 15	-	35	25		
03083112	14	20.2 N	128.1E	95	0	33	30	33	50					20	20	$\overline{35}$	25			

03083118	15	20.4 N	126.7 E	100	0	6	29	39	94				0	-	-	-	15	15	20	10	

Figure 1-14W-1. 0122007 Z September 2003 Taiwan Radar image showing the eye feature as the system passed south of Taiwan with an intensity of 120 knots.

Figure 1-14W-2. 012232 Z September 2003 GOES-9 85 GHz TRMM satellite imagery of TY 14 W (Dujuan), located 110 nm southwest of Taiwan at an intensity of 120 knots.

Figure 1-14W-3. $012325 Z$ September 2003 GOES-9 visible imagery of TY 14W (Dujuan), located 110 nm southwest of Taiwan at an intensity of 120 knots.

Figure 1-14W-4. 020250Z September 2003 MODIS true-color image of TY 14W (Dujuan), located in the South China Sea, with an intensity of 120 knots.

TYPHOON 14W (DUJUAN)

28 AUGUST - 03 SEPTEMBER 2003

Time Intensity for 14 W

Intensity (kts)

Typhoon (TY) 14W (Dujuan)*

First Poor : 0600Z 27 Aug 03
First Fair : 2300Z 27 Aug 03
First TCFA : 0000Z 28 Aug 03
First Warning : 0600Z 28 Aug 03
Last Warning : 0000Z 03 Sep 03, Dissipated
Max Intensity : 125 kts, gusts to 145 kts
Landfall : China, East of Hong Kong
Total Warnings : 24
Remarks:
(1) Typhoon (TY) 14W developed in the Philippine Sea, approximately 280 nm northwest of Guam, on 27 August 2003. TY 14W tracked southwestward for about 30 hours, under the influence of low to mid-level steering flow associated with a ridge to the north. From 0600Z on 29 August to $0600 Z$ on 30 August, TY 14 W underwent rapid intensification (2 Dvorak T-numbers) due to an upper level low northwest of the system which enhanced poleward outflow.

After $0000 Z$ on 30 August, a mid-level ridge building eastward from Asian produced a northwestward track change, followed by a westward track change toward Hong Kong. Track speed also increased to 12 to 15 knots and intensification during this period was near the climatological mean of 1 Dvorak T-number/day.

By 2200 Z on 31 August, microwave imagery indicated the presence of a concentric eyewalls and the cyclone attained maximum intensity of 125 knots shortly thereafter. TY 14 W then slowly weakened as it tracked toward China and made landfall at typhoon strength around $1500 Z$ on 02 September, just east of Hong Kong. The cyclone then rapidly decreased in intensity over China and the final warning was issued at 0000 Z on 03 September.
(2) TY 14W passed 25 nm south of Taiwan, with an intensity of 120 knots on 01 September. Reports from Taiwan indicated rain and wind damage, flooding, and one missing person. Hong Kong shut the airport down during storm passage. Subsequent reports indicate 36 fatalities and 10 missing from areas near Hong Kong.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03082712		19.6 N	139.0E	25																
03082718		19.0N	138.4E	25																
03082800		18.4 N	138.1E	25																
03082806	1	17.6N	137.5E	30	0	32	42	69	110	135			0	5	15	0	10	20		
03082812	2	16.8 N	136.7E	35	5	19	50	79	146	181	156	347	0	10	10	-5	0	15	40	-10
03082818	3	16.5N	136.0E	35	12	30	71	108	160	144	197	408	0	10	-5	10	10	25	40	20
03082900	4	16.3 N	135.5E	35	16	37	82	104	127	134	254	462	0	0	15	15	15	50	45	40
03082906	5	16.1 N	135.1E	35	13	47	52	62	54	102	206	318	0	15	25	20	25	45	25	55
03082912	6	16.0 N	134.8E	45	42	94	126	125	103	140	254		0	-5	0	10	0	20	5	
03082918	7	16.0N	134.6E	60	46	64	83	97	93	173	289		0	10	20	15	10	-5	45	
03083000	8	16.1 N	134.3E	70	0	48	91	140	148	272	385		0	20	25	15	10	-5	70	
03083006	9	16.7N	133.7E	75	5	32	62	92	135	245	329		0	10	25	10	10	10	60	
03083012	10	17.6 N	133.1E	75	8	34	80	93	160	226			0	10	5	- 15	20	15		
03083018	11	18.4 N	132.2E	80	0	23	46	67	86	156			0	-5	-5	20	20	5		
03083100	12	19.2 N	131.1E	80	0	33	51	74	90	208			0	10	25	25	30	25		
03083106	13	19.8N	129.6E	90	0	30	45	73	88	188			0	-5	15	20	35	25		
03083112	14	20.2 N	128.1E	95	0	33	30	33	50				-5	20	20	-	25			
03083118	15	20.4 N	126.7E	100	0	6	29	39	94				0	15	15	- 20	10			
03090100	16	20.6 N	125.4E	120	6	34	57	73	155				0	-5	10	-5	35			
03090106	17	20.9 N	123.6E	120	12	41	49	96	98				0	5	0	20	35			
03090112	18	21.2N	121.8E	125	0	21	29	78					0	10	- 10	25				
03090118	19	21.6 N	120.0E	120	0	8	46	96					0	10	15	5				
03090200	20	22.0 N	118.2E	120	0	17	89						0	5	5					
03090206	21	22.2 N	116.6E	105	5	56	90						0	20	15					
03090212	22	22.5 N	114.7E	100	6	65							0	25						

03090218	23	$22.6 N$	112.6 E	65	0	16								0	5					
03090300	24	22.6 N	110.5 E	40	0									0						

＝－1e：2003C3012COT21c1．poz
Tlue：「rI iz

01.09 .2003 120：07：21

Tai』サーChiさu
流 $-\operatorname{ll}$ Jenpler 14

Farrocu（）： 0 GEMFTRC Iz：

Figure 1－14W－1．0122007Z September 2003 Taiwan Radar image showing the eye feature as the system passed south of Taiwan with an intensity of 120 knots．

Figure 1-14W-2. 012232 Z September 2003 GOES-9 85 GHz TRMM satellite imagery of TY 14W (Dujuan), located 110 nm southwest of Taiwan at an intensity of 120 knots.

Figure 1-14W-3. 012325Z September 2003 GOES-9 visible imagery of TY 14W (Dujuan), located 110 nm southwest of Taiwan at an intensity of 120 knots.

Figure 1-14W-4. 020250Z September 2003 MODIS true-color image of TY 14W (Dujuan), located in the South China Sea, with an intensity of 120 knots.

TYPHOON 14W (DUJUAN)

28 AUGUST - 03 SEPTEMBER 2003

Time Intensity for 14W
Intensity (kts)

Super Typhoon (STY) 15W (Maemi)*

First Poor : 0600Z 02 Sep 03
First Fair : 0600Z 03 Sep 03
First TCFA : $0200 Z 05$ Sep 03
First Warning : 1800Z 05 Sep 03
Last Warning : $0600 Z 13$ Sep 03
Max Intensity : 150 kts, gusts to 180 kts
Landfall : Kosong, South Korea
Total Warnings : 31
Remarks:

1) Super Typhoon (STY) 15W formed in the monsoon trough approximately sixty nautical miles eastsoutheast of Guam. This cyclone tracked northwestward over Guam as a suspect area before being warned on. The cyclone initially intensified at a less than climatological rate as it tracked in an environment of moderate upper level outflow and low to moderate vertical windshear and attained typhoon strength at 1200 Z on September 7th.

As STY 15W moved northwestward 300 to 400 miles southeast of Okinawa, a mid-latitude trough tracking east off China weakened the mid-level subtropical ridge, which allowed the cyclone to move poleward after 1200 Z on 10 September. STY 15W experienced rapid intensification (two T-numbers / 24 hours) beginning around 1800 Z on 8 September due to enhanced upper level outflow. The rapid rate of intensification allowed the cyclone to reach super typhoon strength by $091200 Z$ and attain maximum intensity of 150 knots 12 hours later.

STY 15W passed approximately 120NM west of Okinawa between 0600 z and 1200 Z on 11 September, then made landfall at Konsong, South Korea near 1300Z on 12 September and, subsequently, tracked along the southeastern coast of Korea. STY 15W then moved into the Sea of Japan and became an extratropical system at around $0600 Z$ on 13 September.
2) One fatality was reported and a further 93 injuries as STY 15W tracked over the islands of Miyakojima and Kumejima in the Okinawa prefecture, approximately 200 nautical miles southwest of Naha, Okinawa. These islands sustained property damage, flight cancellations and extensive loss of
electricity. Peak sustained winds of 33 knots gusting to 47 knots were measured at Kadena Air Base. Southern Japan received significant precipitation and 48 people were evacuated from their homes in Nagasaki prefecture where landslides were reported. STY 15 W was one of the most intense cyclones to strike Korea according to available records. STY 15W made landfall in Kosong, South Korea at an intensity of approximately 90 knots and caused over 120 fatalities, with thousands evacuated and approximately 1.2 billion dollars in damage reported.

*Named by WMO Designated RSMC

Statistics for JTWC on STY15W																					
	WRN	BEST	TRACK			OSI	TIO	N	ERR	ORS					ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24		36	48	72	96	120	00	12	24	36	48	72	96	120
03090406		9.6 N	150.9E	20																	
03090412		10.3 N	149.5E	25																	
03090418		11.3 N	148.4E	25																	
03090500		12.6 N	147.6E	25																	
03090506		13.0 N	146.1E	25																	
03090512		13.5 N	144.6E	30																	
03090518	1	14.1 N	143.3E	35	26	85	12		171	167	132			-5	0	0	0	0	0		
03090600	2	14.6 N	142.1E	40	13	13	66		115	98	127	204	244	0	5	5	10	10	0	50	-15
03090606	3	15.2 N	141.0E	40	11	51	74		66	48	57	169	257	0	0	5	5	15	20	- 45	-20
03090612	4	15.9 N	140.0E	45	26	38	54		43	21	99	207	248	0	-5	5	5	15	$\overline{-}$	- 45	-20
03090618	5	16.7 N	138.9E	50	8	41	58		62	70	106	110	120	0	5	10	15	30	15	$\overline{10}$	0
03090700	6	17.4 N	137.7E	60	13	49	49		54	85	118	125	76	0	15	15	20	20	30	0	0
03090706	7	18.3 N	136.7E	60	8	21	12		13	30	20	103	112	0	5	15	20	-5	$\overline{-}$	- 10	15
03090712	8	19.0 N	135.8E	60	26	25	13		31	48	16	8	271	5	5	15	10	20	$\overline{-}$	$\bar{\square}$	20
03090718	9	19.4 N	134.8E	65	12	13	13		25	21	44	96	133	0	5	15	15	25	- 20	- 20	10

03090800	10	19.9 N	134.0E	70	8	18	16	33	38	73	62	207	0	5	0	25	40	10	30	10
03090806	11	20.2 N	133.0E	70	16	13	19	33	33	126	50	235	0	5	25	30	40	20	10	25
03090812	12	20.6N	132.0E	75	12	25	43	41	55	51	181	416	0	-5	35	45	40	20	0	30
03090818	13	21.1 N	131.1E	75	12	25	18	25	56	60	333		0	30	35	45	20	-5	15	
03090900	14	21.8 N	130.3E	90	11	30	58	81	107	89	329		0	25	35	$\overline{3}$	0	0	10	
03090906	15	22.4 N	129.5E	115	5	25	62	110	128	74	239		0	-5	20	-5	0	15	25	
03090912	16	22.9 N	128.7E	130	5	42	65	96	104	91	214		0	10	10	0	15	15	20	
03090918	17	23.3 N	127.8E	130	6	30	60	82	47	135			0	10	5	10	-5	20		
03091000	18	23.6 N	127.2E	150	5	23	57	48	30	192			0	0	10	10	- 10	0		
03091006	19	24.0N	126.7E	150	8	25	24	16	49	98			0	5	-5	-5	-5	5		
03091012	20	24.3 N	126.1E	150	0	30	43	48	49	125			0	15	10	10	0	10		
03091018	21	24.7N	125.6E	135	8	25	22	70	118				0	- 10	0	-5	10			
03091100	22	25.2N	125.3E	125	8	32	43	104	121				5	15	- 10	- 10	15			
03091106	23	25.9N	125.3E	135	13	36	83	125	187				0	5	0	5	0			
03091112	24	27.0N	125.5E	135	13	60	87	114	154				0	0	5	0	0			
03091118	25	28.6 N	125.8E	120	12	52	74	103					0	5	-5	0				
03091200	26	30.6 N	126.5E	120	5	13	22	82					0	5	0	0				
03091206	27	32.7 N	127.1E	105	5	19	58						0	10	0					
03091212	28	34.8 N	128.3E	95	0	15	75						-5	15	-5					
03091218	29	36.9 N	129.7E	80	0	29							0	0						
03091300	30	38.9 N	131.5E	75	12	45							0	5						
03091306	31	40.6 N	134.7E	60	7								0							
03091312		42.2 N	137.9E	55																
			AVERAGE		10	32	50	69	78	92	162	211	1	8	11	13	14	15	20	15
			BIAS										0	-2	-3	-6	-7	-8	11	5
			\# CASES		31	30	28	26	24	20	15	11	31	30	28	26	24	20	15	11

Figure 1-15W-1. 100200Z September 2003 MODIS true-color image of STY 15W (Maemi), located 330nm east of Taiwan, with a maximum intensity of 150 knots.

Figure 1-15W-2. 111251 Z September 2003 color composite SSM/I imagery of STY 15W (Maemi), the system was undergoing a concentric eyewall cycle. located 120 nm northwest of Okinawa, Japan at an intensity of 135 knots.

Figure 1-15W-3. 111251Z September 200385 GHz multi-sensor imagery of STY 15W (Maemi), located 120 nm northwest of Okinawa, Japan at an intensity of 135 knots.

SUPER TYPHOON 15W (MAEMI)
 05-13 SEPTEMBER 2003

Time Intensity for 15 W

Intensity (kts)

Super Typhoon (STY) 15W (Maemi)*

First Poor : 0600Z 02 Sep 03

First Fair : $0600 Z 03$ Sep 03
First TCFA : 0200Z 05 Sep 03

First Warning : 1800Z 05 Sep 03
Last Warning : 0600Z 13 Sep 03
Max Intensity : 150 kts, gusts to 180 kts
Landfall : Kosong, South Korea
Total Warnings : 31
Remarks:

1) Super Typhoon (STY) 15W formed in the monsoon trough approximately sixty nautical miles eastsoutheast of Guam. This cyclone tracked northwestward over Guam as a suspect area before being warned on. The cyclone initially intensified at a less than climatological rate as it tracked in an environment of moderate upper level outflow and low to moderate vertical windshear and attained typhoon strength at 1200 Z on September 7th.

As STY 15W moved northwestward 300 to 400 miles southeast of Okinawa, a mid-latitude trough tracking east off China weakened the mid-level subtropical ridge, which allowed the cyclone to move poleward track after 1200 Z on 10 September. STY 15 W experienced rapid intensification (two Tnumbers / 24 hours) beginning around $1800 Z$ on 8 September due to enhanced upper level outflow. The rapid rate of intensification allowed the cyclone to reach super typhoon strength by 091200 Z and attain maximum intensity of 150 knots 12 hours later.

STY 15W passed approximately 120NM west of Okinawa between 0600 z and $1200 Z$ on 11 September, then made landfall at Konsong, South Korea near $1300 Z$ on 12 September and, subsequently, tracked along the southeastern coast of Korea. STY 15W then moved into the Sea of Japan and became an extratropical system at around 0600Z on 13 September.
2) One fatality was reported and a further 93 injuries as STY 15W tracked over the islands of Miyakojima and Kumejima in Okinawa prefecture, approximately 200 nautical miles southwest of Naha, Okinawa. These islands sustained property damage, flight cancellations and extensive loss of electricity. Peak sustained winds of 33 knots gusting to 47 knots were measured at Kadena Air Base. Southern Japan received significant precipitation and 48 people were evacuated from their homes in Nagasaki prefecture where landslides were reported. STY 15 W was one of the most intense cyclones
|to strike Korea according to available records. STY 15W made landfall in Kosong, South Korea at an intensity of approximately 90 knots and caused over 120 fatalities, with thousands evacuated and approximately 1.2 billion dollars in damage reported.

*Named by WMO Designated RSMC

Statistics for JTWC on STY15W

Statistics for JTWC on STY15W																					
	WRN	BEST	TRACK			SIT	ION	ERR	ORS					IND	ER	RR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	2	4	36	48	72	96	120
03090406		9.6 N	150.9E	20																	
03090412		10.3N	149.5E	25																	
03090418		11.3N	148.4E	25																	
03090500		12.6 N	147.6E	25																	
03090506		13.0 N	146.1E	25																	
03090512		13.5 N	144.6E	30																	
03090518	1	14.1 N	143.3E	35	26	85	125	171	167	132			-5	0	0		0	0	0		
03090600	2	14.6N	142.1E	40	13	13	66	115	98	127	204	244	0	5	5		10	10	0	50	-15
03090606	3	15.2N	141.0E	40	11	51	74	66	48	57	169	257	0	0	5		5	15	20	45	-20
03090612	4	15.9N	140.0E	45	26	38	54	43	21	99	207	248	0	-5	5		5	15	30	45	-20
03090618	5	16.7N	138.9E	50	8	41	58	62	70	106	110	120	0	5	10	0	15	30	15	10	0
03090700	6	17.4 N	137.7E	60	13	49	49	54	85	118	125	76	0	15	15	5	20	20	30	0	0
03090706	7	18.3N	136.7E	60	8	21	12	13	30	20	103	112	0	5	15	5	20	-5	30	10	15
03090712	8	19.0N	135.8E	60	26	25	13	31	48	16	8	271	5	5	15		10	20	30	10	20
03090718	9	19.4 N	134.8E	65	12	13	13	25	21	44	96	133	0	5	15	5	15	25	20	20	10
03090800	10	19.9N	134.0E	70	8	18	16	33	38	73	62	207	0	5	0		25	40	10	30	10
03090806	11	20.2N	133.0E	70	16	13	19	33	33	126	50	235	0	5	25		30	40	20	10	25

03090812	12	20.6N	132.0E	75	12	25	43	41	55	51	181	416	0	-5	35	45	40	20	0	30
03090818	13	21.1 N	131.1E	75	12	25	18	25	56	60	333		0	30	35	45	20	-5	15	
03090900	14	21.8 N	130.3E	90	11	30	58	81	107	89	329		0	25	35	30	0	0	10	
03090906	15	22.4 N	129.5E	115	5	25	62	110	128	74	239		0	-5	20	-5	0	15	25	
03090912	16	22.9 N	128.7E	130	5	42	65	96	104	91	214		0	10	10	0	15	15	20	
03090918	17	23.3 N	127.8E	130	6	30	60	82	47	135			0	10	5	10	-5	20		
03091000	18	23.6N	127.2E	150	5	23	57	48	30	192			0	0	10	10	10	0		
03091006	19	24.0N	126.7E	150	8	25	24	16	49	98			0	5	-5	-5	-5	5		
03091012	20	24.3 N	126.1E	150	0	30	43	48	49	125			0	15	10	10	0	10		
03091018	21	24.7N	125.6E	135	8	25	22	70	118				0	10	0	-5	10			
03091100	22	25.2N	125.3E	125	8	32	43	104	121				5	15	10	10	15			
03091106	23	25.9N	125.3E	135	13	36	83	125	187				0	5	0	5	0			
03091112	24	27.0N	125.5E	135	13	60	87	114	154				0	0	5	0	0			
03091118	25	28.6N	125.8E	120	12	52	74	103					0	5	-5	0				
03091200	26	30.6 N	126.5E	120	5	13	22	82					0	5	0	0				
03091206	27	32.7 N	127.1E	105	5	19	58						0	10	0					
03091212	28	34.8 N	128.3E	95	0	15	75						-5	15	-5					
03091218	29	36.9 N	129.7E	80	0	29							0	0						
03091300	30	38.9 N	131.5E	75	12	45							0	5						
03091306	31	40.6N	134.7E	60	7								0							
03091312		42.2 N	137.9E	55																
			AVERAGE		10	32	50	69	78	92	162	211	1	8	11	13	14	15	20	15
			BIAS										0	-2	-3	-6	-7	-8	11	5
			\# CASES		31	30	28	26	24	20	15	11	31	30	28	26	24	20	15	11

Figure 1-15W-1. 100200 Z September 2003 MODIS true-color image of STY 15W (Maemi), located 330nm east of Taiwan, with a maximum intensity of 150 knots.

Figure 1-15W-2. $111251 Z$ September 2003 color composite SSM/I imagery of STY 15W (Maemi), the system was undergoing a concentric eyewall cycle. located 120 nm northwest of Okinawa, Japan at an intensity of 135 knots.

Figure 1-15W-2. $111251 Z$ September 200385 GHz multi-sensor imagery of STY 15W (Maemi), located 120 nm northwest of Okinawa, Japan at an intensity of 135 knots.

SUPER TYPHOON 15W (MAEMI)
 05-13 SEPTEMBER 2003

Time Intensity for 15W

Intensity (kts)

Typhoon (TY) 16W (Choi-Wan)*

First TCFA : 1300Z 17 Sep 03
First Warning : $1800 Z 17$ Sep 03
Last Warning : 1800Z 22 Sep 03
Max Intensity : 95 kts, gusts to 115 kts
Landfall : Okinawa, Japan
Total Warnings : 21
Remarks:

1) Typhoon (TY) 16W was first noted as a rapidly developing low level circulation in a reverse oriented monsoon trough on 17 September. Within 18 hours, a first warning was issued for this cyclone as it tracked poleward under the influence of the subtropical ridge to the east-northeast.

Once TY 16W passed the axis of the steering ridge on 19 September, the cyclone began to move more poleward while still intensifying. By $1800 Z$ on 21 September, interaction with the mid-latitude westerlies began to weaken the cyclone as it tracked northeastward to east-northeastward while undergoing extratropical transition. Extratropical transition was complete within 24 hours and a final warning was issued.
2) No reports of significant damage are associated with this system.
*Named by WMO Designated RSMC

	WRN BEST TRACK				POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03091706		19.4 N	130.4E	15																
03091712		20.0N	129.8E	25																
03091718	1	20.7 N	129.2E	25	12	50	72	154	229	391	614	968	0	0	10	10	10	-5	45	
03091800	2	21.4 N	128.5E	30	12	16	101	188	264	452	690	1220	0	10	10	-5	5	-5	25	30
03091806	3	21.7 N	127.4E	30	24	99	186	254	307	453	729		0	-5	10	$\overline{10}$	5	15	20	
03091812	4	22.7 N	127.2E	30	20	110	190	248	265	429	737		0	15	15	10	-5	30	10	
03091818	5	23.7 N	127.5E	45	8	79	149	211	247	432	761		0	0	10	20	20	25	-5	
03091900	6	24.9N	127.7E	55	17	24	58	88	150	328	797		0	10	25	25	0	-5	20	
03091906	7	26.0 N	128.0E	55	5	21	13	49	98	215			0	5	25	25	10	20		
03091912	8	27.0N	128.2E	60	6	6	48	105	120	130			5	10	25	5	- 15	$\overline{-}$		
03091918	9	27.8N	128.8E	65	8	18	65	78	97	106			0	15	15	- 15	25	10		
03092000	10	28.4 N	129.7E	65	6	45	79	94	99	184			0	10	-5	25	- 3	10		
03092006	11	28.8 N	130.7E	65	12	68	86	92	101				5	10	20	30	35			
03092012	12	29.0 N	132.1E	70	16	58	93	120	158				0	10	- 20	- 25	25			
03092018	13	29.4 N	133.7E	70	24	67	90	119	182				5	$\overline{-}$	$\overline{35}$	- 40	25			
03092100	14	30.0 N	135.6E	90	11	24	13	18	186				-5	25	$\overline{30}$	- 20	- 10			
03092106	15	31.1 N	137.2E	100	10	31	58	117					-5	10	$\overline{10}$	-5				
03092112	16	32.1 N	139.0E	100	15	30	53	226					-5	10	-5	0				
03092118	17	33.2 N	140.8E	100	5	10	13						10	- 15	-5					
03092200	18	34.4 N	142.8E	95	6	26	123						$\overline{10}$	-5	-5					

03092206	19	$35.9 N$	145.0 E	90	0	50										-	0					

Figure 1-16W-1. 210140 Z September 2003 MODIS true-color image of TY 16W (ChoiWan), located 220nm south of Japan, with an intensity of 85 knots.

Figure 1-16W-2. $210544 Z$ September 2003 color composite TRMM imagery of TY 16W (Choi-wan), the large eye was located 160 nm southeast mainland Japan at its peak intensity of 95 knots.

TYPHOON 16W (CHOI-WAN)

17-22 SEPTEMBER 2003

Time Intensity for 16 W

Intensity (kts)

Typhoon (TY) 16W (Choi-Wan)*

First Poor: N/A

First Fair : $0130 Z 17$ Sep 03
First TCFA : 1300Z 17 Sep 03
First Warning : 1800Z 17 Sep 03

Last Warning : 1800Z 22 Sep 03
Max Intensity : 95 kts, gusts to 115 kts

Landfall : Okinawa, Japan
Total Warnings : 21
Remarks:

1) Typhoon (TY) 16W was first noted as a rapidly developing low level circulation in a reverse oriented monsoon trough on 17 September. Within 18 hours, a first warning was issued for this cyclone as it tracked poleward under the influence of the subtropical ridge to the east-northeast.

Once TY 16W passed the axis of the steering ridge on 19 September, the cyclone began to move more poleward while still intensifying. By $1800 Z$ on 21 September, interaction with the mid-latitude westerlies began to weaken the cyclone as it tracked northeastward to east-northeastward while undergoing extratropical transition. Extratropical transition was complete within 24 hours and a final warning was issued.
2) No reports of significant damage are associated with this system.
*Named by WMO Designated RSMC

Statistics for JTWC on TY16W																				
	WRN	BEST	TRACK		PO	SITIO	ON E	RRO	RS					ND	ER	ROR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03091706		19.4 N	130.4E	15																
03091712		20.0 N	129.8E	25																
03091718	1	20.7 N	129.2E	25	12	50	72	154	229	391	614	968	0	0	10	10	10	-5	45	0
03091800	2	21.4 N	128.5E	30	12	16	101	188	264	452	690	1220	0	10	10	-5	5	-5	25	30
03091806	3	21.7 N	127.4E	30	24	99	186	254	307	453	729		0	-5	10	- 10	5	15	20	
03091812	4	22.7 N	127.2E	30	20	110	190	248	265	429	737		0	15	15	10	-5	30	10	
03091818	5	23.7 N	127.5E	45	8	79	149	211	247	432	761		0	0	10	20	20	25	-5	
03091900	6	24.9 N	127.7E	55	17	24	58	88	150	328	797		0	10	25	25	0	-5	20	
03091906	7	26.0 N	128.0E	55	5	21	13	49	98	215			0	5	25	25	-	20		
03091912	8	27.0N	128.2E	60	6	6	48	105	120	130			5	10	25	5	-	10		
03091918	9	27.8 N	128.8E	65	8	18	65	78	97	106			0	15	15	-	25	10		
03092000	10	28.4 N	129.7E	65	6	45	79	94	99	184			0	10	-5	- 25	- 3	10		
03092006	11	28.8 N	130.7E	65	12	68	86	92	101				5	10	- 20	-	-			
03092012	12	29.0 N	132.1E	70	16	58	93	120	158				0	- 10	- 20	-	25			
03092018	13	29.4 N	133.7E	70	24	67	90	119	182				5	30	35	40	25			
03092100	14	30.0 N	135.6E	90	11	24	13	18	186				-5	25	- 30	20	- 10			
03092106	15	31.1 N	137.2E	100	10	31	58	117					-5	- 10	- 10	-5				
03092112	16	32.1 N	139.0E	100	15	30	53	226					-5	- 10	-5	0				
03092118	17	33.2 N	140.8E	100	5	10	13						- 10	- 15	-5					

03092200	18	34.4 N	142.8 E	95	6	26	123							-	-5	-5					
03092206	19	35.9 N	145.0 E	90	0	50								-	-	0					

Figure 1-16W-1. 210140 Z September 2003 MODIS true-color image of TY 16W (ChoiWan), located 220 nm south of Japan, with an intensity of 85 knots.

Figure 1-16W-2. $210544 Z$ September 2003 color composite TRMM imagery of TY 16W (Choi-wan), the large eye was located 160 nm southeast mainland Japan at its peak intensity of 95 knots.

TYPHOON 16W (CHOI-WAN)

17-22 SEPTEMBER 2003

Time Intensity for 16W

Typhoon (TY) 17W (Koppu)*

First Poor : 0600Z 22 Sep 03
First Fair : 2130Z 23 Sep 03
First TCFA : 0230Z 24 Sep 03
First Warning : 1200Z 24 Sep 03
Last Warning : 0600Z 30 Sep 03, Extratropical
Max Intensity : 90 kts gusts to 110 kts
Landfall : None
Total Warnings : 24
Remarks:
(1) Typhoon (TY) 11 W was initially described as a disturbance developing out of a broad monsoon trough, approximately 220 NM east-northeast of Yap. The first warning was issued at $1200 Z$ on 24 September. The cyclone initially tracked northwestward along the southern periphery of a mid-level steering ridge anchored east of Japan. Intensification of TY 17W was suppressed by a TUTT cell located to the northeast of the system that hindered upper level diffluence. This same TUTT cyclone appears to have caused the cyclone to loop before $1200 Z$ on 25 September.

TY 17W turned to the north-northeast after 25 September in response to a shortwave trough in the midlatitude westerlies. Subsequently, the outflow from the cyclone improved due to this interaction with the shortwave trough and the dissipation of the TUTT cyclone.

After 25 September, another trough in the mid-latitude westerly flow caused the cyclone to accelerate east-northeastward and begin transition into an extratropical system. The final warning was issued at $0600 Z$ on 30 September.
(2) No casualties or damage were reported.
*Named by WMO Designated RSMC

Statistics for JTWC on TY17W

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03092318		14.5 N	139.6E	25																
03092400		15.1 N	138.9E	25																
03092406		15.6 N	138.1E	25																
03092412	1	15.9 N	137.1E	25	11	12	133	135	156	172	148	240	0	0	5	25	30	20	10	-5
03092418	2	16.6 N	136.2E	30	12	122	133	133	166	150			0	10	20	35	35	15		
03092500	3	16.6 N	135.4E	30	23	67	45	51	62	38			0	10	25	30	15	10		
03092506	4	15.8 N	135.6E	30	42	47	52	90	115	140			0	10	25	25	5	20		
03092512	5	16.4 N	136.1E	30	36	21	38	78	120	144			0	10	15	5	0	5		
03092518	6	17.2 N	136.2E	30	17	33	62	103	109	84			0	10	10	10	0	15		
03092600	7	17.9 N	136.4E	25	111	154	207	258	281	266			0	0	- 15	15	-5	20		
03092606	8	18.5 N	136.7E	25	23	21	81	108	126	120			0	0	15	10	-5	25		
03092612	9	19.3 N	137.4E	30	17	43	97	126	110	81			0	10	15	10	15	20		
03092618	10	20.1 N	138.1E	35	16	43	48	50	57	83			-5	20	15	10	25	10		
03092700	11	21.2 N	138.7E	50	25	39	75	110	172	122			0	-5	5	0	-10	10		
03092706	12	22.3 N	139.3E	60	17	42	76	144	219	118			0	10	20	5	-5	25		
03092712	13	23.3 N	139.7E	60	12	42	96	163	227				0	5	0	10	- 10			
03092718	14	24.1 N	140.0E	60	18	48	112	213	283				0	5	-5	15	10			
03092800	15	25.0 N	140.3E	60	0	34	95	182	139				0	-5	15	25	10			
03092806	16	25.7 N	140.6E	60	0	11	89	183	108				0	10	25	20	5			
03092812	17	26.3N	140.9E	70	26	28	103	119					0	-5	10	0				

03092818	18	27.0 N	141.2E	80	24	32	71	72					0	- 10	10	10				
03092900	19	27.7N	141.5E	85	16	32	39						-5	-	0					
03092906	20	28.5N	141.9E	90	12	49	92						0	5	20					
03092912	21	29.4 N	142.6E	85	13	59							0	5						
03092918	22	30.7 N	144.2E	75	16	64							0	15						
03093000	23	32.7 N	147.1E	60	13								5							
03093006	24	35.0 N	150.1E	45	34								0							
			AVERAGE		23	47	87	129	153	127	148	240	1	8	14	14	12	16	10	5
			BIAS										0	1	1	1	0	1	- 10	-5
			\# CASES		24	22	20	18	16	12	1	1	24	22	20	18	16	12	1	1

Figure 1-17W-1. 290225 Z September 2003 GOES-9 visible imagery of TY 17W (Koppu), located 200 nm north-northeast of Iwo Jima island at an intensity of 80 knots.

Figure 1-17W-2. $290400 Z$ September 2003 MODIS true-color image of TY 17W (Koppu), located 210nm north of Iwo Jima, with an intensity of 90 knots.

TYPHOON 17W (KOPPU)

24-30 SEPTEMBER 2003

Time Intensity for 17W

Intensity (kts)

Typhoon (TY) 17W (Koppu)*

First Poor : 0600Z 22 Sep 03
First Fair : $2130 Z 23$ Sep 03
First TCFA : 0230Z 24 Sep 03
First Warning : 1200Z 24 Sep 03
Last Warning : 0600Z 30 Sep 03, Extratropical
Max Intensity : 90 kts gusts to 110 kts
Landfall : None

Total Warnings : 24
Remarks:
(1) Typhoon (TY) 11W was initially described as a disturbance developing out of a broad monsoon trough, approximately 220 NM east-northeast of Yap and the first warning was issued at $1200 Z$ on 24 September. The cyclone initially tracked northwestward along the southern periphery of a mid-level steering ridge anchored east of Japan. Intensification of TY 17W was suppressed by a TUTT cell located to the northeast of the system that hindered upper level diffluence. This same TUTT cyclone appears to have caused the cyclone to loop before $1200 Z$ on 25 September.

TY 17W turned to the north-northeast after 25 September in response to a shortwave trough in the midlatitude westerlies. Subsequently, the outflow from the cyclone improved due to this interaction with the shortwave trough and the dissipation of the TUTT cyclone.

After 25 September, another trough in the mid-latitude westerly flow caused the cyclone to accelerate east-northeastward and begin transition into an extratropical system. The final warning was issued at 0600Z on 30 September.
(2) No casualties or damage were reported.
*Named by WMO Designated RSMC

Statistics for JTWC on TY17W

Statistics for JTWC on TY17W																				
	WRN	BEST	TRACK		POS	ITIO	N ER	RROR						ND	ERR	ROR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03092318		14.5 N	139.6E	25																
03092400		15.1 N	138.9E	25																
03092406		15.6 N	138.1E	25																
03092412	1	15.9N	137.1E	25	11	12	133	135	156	172	148	240	0	0	5	25	30	20	10	-5
03092418	2	16.6 N	136.2E	30	12	122	133	133	166	150			0	10	20	35	35	15		
03092500	3	16.6 N	135.4E	30	23	67	45	51	62	38			0	10	25	30	15	10		
03092506	4	15.8 N	135.6E	30	42	47	52	90	115	140			0	10	25	25	5	20		
03092512	5	16.4 N	136.1E	30	36	21	38	78	120	144			0	10	15	5	0	5		
03092518	6	17.2N	136.2E	30	17	33	62	103	109	84			0	10	10	10	0	15		
03092600	7	17.9N	136.4E	25	111	154	207	258	281	266			0	0	15	- 15	-5	20		
03092606	8	18.5 N	136.7E	25	23	21	81	108	126	120			0	0	15	- 10	-5	25		
03092612	9	19.3 N	137.4E	30	17	43	97	126	110	81			0	10	15	10	15	20		
03092618	10	20.1 N	138.1E	35	16	43	48	50	57	83			-5	20	15	10	25	10		
03092700	11	21.2N	138.7E	50	25	39	75	110	172	122			0	-5	5	0	10	10		
03092706	12	22.3N	139.3E	60	17	42	76	144	219	118			0	10	20	5	-5	25		
03092712	13	23.3N	139.7E	60	12	42	96	163	227				0	5	0	- 10	10			
03092718	14	24.1 N	140.0E	60	18	48	112	213	283				0	5	-5	- 15	10			
03092800	15	25.0N	140.3E	60	0	34	95	182	139				0	-5	- 15	- 25	10			
03092806	16	25.7N	140.6E	60	0	11	89	183	108				0	10	- 25	- 20	5			
03092812	17	26.3N	140.9E	70	26	28	103	119					0	-5	$\overline{-}$	0				
03092818	18	27.0N	141.2E	80	24	32	71	72					0	10	- 10	10				
03092900	19	27.7N	141.5E	85	16	32	39						-5	15	0					
03092906	20	28.5N	141.9E	90	12	49	92						0	5	20					
03092912	21	29.4N	142.6E	85	13	59							0	5						

03092918	22	30.7 N	144.2 E	75	16	64								0	15					

Figure 1-17W-1. $290225 Z$ September 2003 GOES-9 visible imagery of TY 17W (Koppu), located 200 nm north-northeast of Iwo Jima island at an intensity of 80 knots.

Figure 1-17W-2. 290400 Z September 2003 MODIS true-color image of TY 17W (Koppu), located 210nm north of Iwo Jima, with an intensity of 90 knots.

TYPHOON 17W (KOPPU)

24-30 SEPTEMBER 2003

Time Intensity for 17W
Intensity (kts)

Tropical Depression (TD) 18W

First Poor: 0600Z 06 Oct 03

First Fair : 0800Z 06 Oct 03

First TCFA : 1130Z 06 Oct 03

First Warning : 1800Z 06 Oct 03
Last Warning : 0600Z 10 Oct 03, Dissipated
Max Intensity : 25 kts, gusts to 35 kts
Landfall : None

Total Warnings : 15
Remarks:

1) Tropical Depression (TD) 18W developed and dissipated within 96 hours in the South China Sea.

Weak steering flow in the region caused this cyclone to initially move southwest, then loop anticyclonically, before moving poleward toward southern China. TD 18W never exceeded 25 knots in maximum intensity and dissipated over the South China Sea just before making landfall southwest of Hong Kong.
2) No damage was reported in association with Tropical Depression 18W.

03100612		18.2N	116.7E	15																
03100618	1	18.0N	116.2E	25	28	70	39	48	134	327		0		10	15	20	20	30		
03100700	2	17.7N	115.7E	25	5	21	92	153	205	332		0		10	15	20	20	30		
03100706	3	17.3N	115.2E	25	5	63	118	163	221	277		0	5		10	15	20	25		
03100712	4	17.0N	115.0E	25	12	91	142	186	250	281		0		01	15	20	25	25		
03100718	5	17.1 N	115.3E	25	31	96	154	230	299	325		0	0		0	5	10	10		
03100800	6	17.4 N	115.4E	25	13	34	91	171	198	207		0	0		0	5	5	5		
03100806	7	17.7N	115.4E	25	8	44	109	178	198			0	0		5	10	10			
03100812	8	18.0 N	115.4E	25	17	49	111	148	152			0	0		5	10	15			
03100818	9	18.3N	115.3E	25	8	25	51	70	41			0	0		0	5	5			
03100900	10	18.7 N	115.2E	25	18	70	100	103	87			0	0		0	0	-5			
03100906	11	19.1 N	115.3E	25	5	45	62	32				0	0	0	0	-5				
03100912	12	19.5 N	115.3E	25	8	13	25	74				0	0	0	0	-5				
03100918	13	19.7N	115.2E	25	13	40	87					0	0	0	0					
03101000	14	19.9N	115.0E	25	6	58	129					0	0	0	0					
03101006	15	20.2N	114.6E	25	0	75						0	-5	5						
03101012		20.8 N	113.8E	25																
03101018		21.0 N	112.8E	25																
03101100		21.7 N	112.0E	25																
			AVERAGE		12	53	94	130	179	292		0	3		5	10	14	21		
			BIAS									0	2	5	5	8	13	21		
			\# CASES		15	15	14	12	10	6			51	51	14	12	10	6		

Figure 1-18W-1. $080436 Z$ October 2003 multi-sensor satellite imagery of TY 18W, the partially exposed low level circulation center was located in the south china sea 295 nm east of Hainan island at its peak intensity of 25 knots.

TROPICAL DEPRESSION 18W

06-10 OCTOBER 2003

Time Intensity for 18 W

Intensity (kts)

Tropical Depression (TD) 18W

First Poor : 0600Z 06 Oct 03
First Fair : 0800Z 06 Oct 03

First TCFA : $1130 Z 06$ Oct 03

First Warning : 1800Z 06 Oct 03
Last Warning : 0600Z 10 Oct 03, Dissipated
Max Intensity : 25 kts, gusts to 35 kts
Landfall : None

Total Warnings : 15
Remarks:

1) Tropical Depression (TD) 18W developed and dissipated within 96 hours in the South China Sea. Weak steering flow in the region caused this cyclone to initially move southwest, then loop anticyclonically, before moving poleward toward southern China. TD 18W never exceeded 25 knots in maximum intensity and dissipated over the South China Sea just before making landfall southwest of Hong Kong.
2) No damage was reported in association with Tropical Depression 18W.

Statistics for JTWC on TD18W																					
	WRN	BEST	RACK			SIT	ION	ER	OR						ND	ER	R				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48		72	96	120	00	12	24	36	48	72	96	120
03100600		18.4 N	117.6E	15																	
03100606		18.4 N	117.1E	15																	
03100612		18.2N	116.7E	15																	

03100618	1	18.0 N	116.2 E	25	28	70	39	48	134	327			0	10	15	20	20	30			
03100700	2	17.7 N	115.7 E	25	5	21	92	153	205	332			0	10	15	20	20	30			
03100706	3	17.3 N	115.2 E	25	5	63	118	163	221	277			0	5	10	15	20	25			
03100712	4	17.0 N	115.0 E	25	12	91	142	186	250	281			0	10	15	20	25	25			
03100718	5	17.1 N	115.3 E	25	31	96	154	230	299	325			0	0	0	5	10	10			
03100800	6	17.4 N	115.4 E	25	13	34	91	171	198	207			0	0	0	5	5	5			
03100806	7	17.7 N	115.4 E	25	8	44	109	178	198				0	0	5	10	10				
03100812	8	18.0 N	115.4 E	25	17	49	111	148	152				0	0	5	10	15				
03100818	9	18.3 N	115.3 E	25	8	25	51	70	41				0	0	0	5	5				
03100900	10	18.7 N	115.2 E	25	18	70	100	103	87				0	0	0	0	-5				
03100906	11	19.1 N	115.3 E	25	5	45	62	32						0	0	0	-5				
03100912	12	19.5 N	115.3 E	25	8	13	25	74						0	0	0	-5				
03100918	13	19.7 N	115.2 E	25	13	40	87						0	0	0						
03101000	14	19.9 N	115.0 E	25	6	58	129						0	0	0						
03101006	15	20.2 N	114.6 E	25	0	75								0	-5						
03101012		20.8 N	113.8 E	25																	
03101018		21.0 N	112.8 E	25																	
03101100		21.7 N	112.0 E	25																	
			AVERAGE		12	53	94	130	179	292			0	3	5	10	14	21			
			BIAS										0	2	5	8	13	21			

Figure 1-18W-1. $080436 Z$ October 2003 multi-sensor satellite imagery of TY 18W, the partially exposed low level circulation center was located in the south china sea 295 nm east of Hainan island at its peak intensity of 25 knots.

TROPICAL DEPRESSION 18W

06-10 OCTOBER 2003

Time Intensity for 18 W
Intensity (kts)

Tropical Depression (TD) 19W

First Poor : N/A
First Fair : 0330Z 10 Oct 03
First TCFA : 0200Z 12 Oct 03
First Warning : 0000Z 12 Oct 03
Last Warning : 0000Z 13 Oct 03, Dissipated
Max Intensity : 30 kts, gusts to 40 kts
Landfall : Multiple events, Kyushu and Honshu, Japan
Total Warnings : 5
Remarks:

1) Tropical Depression (TD) 19 W was first noted as a disturbance on 09 October, east of Okinawa, and was monitored as a suspect area for about 48 hours before the first warning was issued. The cyclone moved slowly poleward toward Kyushu while intensifying. TD 19W reached maximum intensity of 30 knots while east of Ryukyu Island around 1800 Z on 10 October. The cyclone maintained maximum intensity of 30 knots while moving over Kyushu on a northeastward heading, then dissipated over the Kii peninsula on 13 October.
2) No reports of damage were received for this cyclone.

Tropical Depression (TD) 19W

03101006		25.9N	131.0E 25																	
03101012		26.2N	131.3E 25																	
03101018		26.9N	131.5E 30																	
03101100		27.7 N	131.1E 30																	
03101106		28.4 N	130.5E 25																	
03101112		29.1 N	129.8E 30																	
03101118		29.6N	129.6E 30																	
03101200	1	30.3 N	129.8E 30	13	109	245						-5	0	-5						
03101206	2	31.1 N	130.1E 30	7	32							0	0							
03101212	3	32.1 N	131.5E 30	0	5							0	-5							
03101218	4	33.0 N	133.5E 30	16								0								
03101300	5	34.0 N	135.8E 30	0								-5								
			AVERAGE	7	49	245						2	2	5						
			BIAS									-2	-2	-5						
			\# CASES	5	3	1						5	3	1						

Figure 1-19W-1. $110125 Z$ October 2003 Goes-9 visible satellite imagery of TY 19W, the partially exposed low level circulation center was located 175 nm northeast of Okinawa, Japan at its peak intensity of 30 knots.

TROPICAL DEPRESSION 19W

12-13 OCTOBER 2003

Time Intensity for 19W

Intensity (kts)

- KGWC	
- PGTW	
-	KWBC
CIRA	
- CIMS	
- T-Numbers	
- Best Track	

Fix Date (Zulu)

Tropical Depression (TD) 19W

First Poor : N/A
First Fair : 0330Z 10 Oct 03

First TCFA : 0200Z 12 Oct 03
First Warning : 0000Z 12 Oct 03
Last Warning : 0000Z 13 Oct 03, Dissipated
Max Intensity : 30 kts, gusts to 40 kts
Landfall : Multiple events, Kyushu and Honshu, Japan
Total Warnings : 5
Remarks:

1) Tropical Depression (TD) 19W was first noted as a disturbance on 09 October, east of Okinawa, and was monitored as a suspect area for about 48 hours before the first warning was issued. The cyclone moved slowly poleward toward Kyushu while intensifying. TD 19W reached maximum intensity of 30 knots while east of Ryukyu Island around $1800 Z$ on 10 October. The cyclone maintained maximum intensity of 30 knots while moving over Kyushu on a northeastward heading, then dissipated over the Kii peninsula on 13 October.
2) No reports of damage were received for this cyclone.

Statistics for JTWC on TD19W																				
	WRN	BEST T	RACK		POS	ITIO	N E	RRO	RS				WIN	ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03101000		25.7 N	130.7E 25																	
03101006		25.9 N	131.0E 25																	
03101012		26.2 N	131.3E 25																	
03101018		26.9N	131.5E 30																	
03101100		27.7N	131.1E 30																	
03101106		28.4 N	130.5E 25																	
03101112		29.1 N	129.8E 30																	
03101118		29.6N	129.6E 30																	
03101200	1	30.3 N	129.8E 30	13	109	245						-5	0	-5						
03101206	2	31.1 N	130.1E 30	7	32							0	0							
03101212	3	32.1 N	131.5E 30	0	5							0	-5							
03101218	4	33.0 N	133.5E 30	16								0								
03101300	5	34.0 N	135.8E 30	0								-5								
			AVERAGE	7	49	245						2	2	5						
			BIAS									-2	-2	-5						
			\# CASES	5	3	1						5	3	1						

Figure 1-19W-1. $110125 Z$ October 2003 Goes-9 visible satellite imagery of TY 19W, the partially exposed low level circulation center was located 175 nm northeast of Okinawa, Japan at its peak intensity of 30 knots.

TROPICAL DEPRESSION 19W
12-13 OCTOBER 2003

Time Intensity for 19W
Intensity (kts)

Fix Date (Zulu)

Typhoon (TY) 20W (Ketsana)*

First Poor : 0600Z 15 Oct 03
First Fair : 0930Z 18 Oct 03
First TCFA : 1300Z 18 Oct 03
First Warning : 1800Z 18 Oct 03
Last Warning : 0000Z 26 Oct 03, Extratropical
Max Intensity : 125kts
Landfall : None
Total Warnings : 30
Remarks:

1) Typhoon (TY) 20W was first detected as a tropical disturbance approximately 700 NM east of Luzon Island around $0600 Z$ on 15 October and was monitored for approximately 84 hours before first warning was issued. Of note was the near simultaneous development of TY 21W in the Northern Marianas Islands during the development of TY 20W. First warning for TY 21W was issued some 18 hours after the initial warning on TY 20W.

Development for TY 20W was noted as being initially slow, with abrupt consolidation less than 10 hours after being determined a fair suspect area with subsequent issuance of the first warning. Movement of this cyclone was initially very slow as it was located south of a weakness in the subtropical ridge.

The cyclone reached typhoon strength around $1200 Z$ on 20 October due to dual channel upper level poleward and equatorward outflow. The continued weak steering flow caused TY 20 W to move slowly poleward as it rapidly intensified over the next 24 hours to maximum intensity of 125 knots by 1200 Z on 21 October. This rapid intensification phase (3.0 Dvorak T-numbers in 36 hours) ended after this time and the cyclone began shifting to a more northeastward track temporarily while slightly weakening.

By $1200 Z$ on 23 October, TY 20W began to move more northeastward, pass the ridge axis increase track speed to 17 knots due to interaction with the mid-latitude westerlies. Vertical wind shear also increased and extratropical transition commenced. A pronounced dry slot was noted in microwave imagery by $1800 Z$ on 24 October, with an extratropical final warning was issued at $0000 Z$ on 26 October.
2) No damage reports were received for this cyclone.

*Named by WMO Designated RSMC

Statistics for JTWC on TY20W																				
	WRN	BEST	TRACK			SITI	TION	ERR	ORS					ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03101812		14.7 N	130.3E	25																
03101818	1	14.9 N	130.2E	30	13	42	76	114	133	158			0	-	-5	- 10	30	65		
03101900	2	15.2 N	130.2E	35	25	6	26	42	45	80	87	73	0	0	0	-5	25	50	30	-10
03101906	3	15.3N	130.3E	40	11	29	41	17	21	122	177	2620	0	5	0	15	45	45	15	0
03101912	4	15.4 N	130.4E	40	11	21	26	6	49	130	184	3010	0	-5	15	35	60	55	25	-5
03101918	5	15.5N	130.6E	45	18	40	36	48	79	110	210	3050	0	-5	20	50	55	40	20	5
03102000	6	15.6N	130.8E	50	17	25	33	71	111	201	281	2590	0	10	30	50	40	20	20	-15
03102006	7	15.7N	131.0E	55	11	12	12	26	55	56	111	49	0	20	45	50	40	-	-5	-10
03102012	8	15.9N	131.0E	65	5		29	52	69	41	98	17	0	25	-	35	30	15	-	-10
03102018	9	16.2N	131.0E	80	0	0	24	60	90	127	267	1290	0	20	-	- 10	5	5	-5	-10
03102100	10	16.4 N	131.1E	95	6	21	50	82	120	233	307	1920	0	15	-5	0	15	5	-5	-15
03102106	11	16.6N	131.2E	115	0	13	36	46	78	165	228	152	5	5	15	25	30	25	0	20
03102112	12	16.8 N	131.1E	125	18	27	33	40	64	159	233	150	0	10	15	25	25	20	-5	20
03102118	13	17.1 N	131.1E	125	8	13	19	56	70	121	121		0	5	20	20	15	5	5	
03102200	14	17.4 N	131.1E	125	5	11	12	29	54	115	140		0	5	10	5	-5	10	15	
03102206	15	17.8N	131.1E	125	8	24	23	23	19	94	440		0	15	20	10	5	-5	- 15	
03102212	16	18.2N	131.3E	125	8		27	32	30	173	498		0	5	0	-5	-5	- 20	30	

03102218	17	18.5N	131.7E	115	6	31	30	34	24	222			0	0	0	10	- 10	15		
03102300	18	18.7N	132.1 E	110	18	31	43	67	86	309			0	0	0	-5	15	15		
03102306	19	19.0N	132.4E	105	5	19	26	55	98	407			0	5	5	0	-5	10		
03102312	20	19.5N	132.8E	105	16	8	23	38	105	402			0	0	5	-5	-5	10		
03102318	21	20.0 N	133.2E	100	5	331	17	26	99				0	5	-5	$\overline{-}$	-5			
03102400	22	20.4 N	133.5E	100	8	505	58	92	187				0	5	-5	-5	-5			
03102406	23	21.0 N	133.7E	90	0	34	37	72	108				0	-5	-5	-5	20			
03102412	24	21.9 N	134.0E	85	5	25	34	56	91				0	10	10	15	25			
03102418	25	23.0 N	134.8E	85	16	8	44	73					0	15	15	25				
03102500	26	24.5 N	135.7E	85	5	38	95	155					0	10	15	20				
03102506	27	25.9N	137.1E	80	5	53	79						0	-5	15					
03102512	28	27.8N	139.1E	75	12	59	106						0	10	15					
03102518	29	29.8 N	141.7E	70	35	50							0	- 10						
03102600	30	31.9 N	144.2E	70	0	42							0	- 10						
03102606		34.1 N	147.0E	70																
03102612		36.1 N	150.3E	65																
			AVERAGE		10	27	39	54	79	171	226	172	0	8	13	17	22	23	13	11
			BIAS										0	-4	-6	- 11	14	17	13	-11
			\# CASES		30	30	28	26	24	20	15	11	30	30	28	26	24	20	15	11

Figure 1-20W-1. $210155 Z$ October 2003 MODIS true color image of 20W (Ketsana), northeast of the Philippines, with a peak intensity of 125 knots.

Figure 1-20W-2. $211246 Z$ October 2003 Goes-9 enhanced infrared satellite imagery of TY 20W (Ketsana), located 500 nm east of Luzon, Philippines at its peak intensity of 125 knots.

Figure 1-20W-3. $220120 Z$ October 2003 Goes-9 visible satellite imagery of TY 20W (Ketsana), the eye was located 500 nm east of Luzon, Philippines at its peak intensity of 125 knots.

TYPHOON 20W (KETSANA)
18-26 OCTOBER 2003

Time Intensity for 20W

Intensity (kts)

Typhoon (TY) 20W (Ketsana)*

First Poor : 0600Z 15 Oct 03

First Fair : 0930Z 18 Oct 03
First TCFA : 1300Z 18 Oct 03

First Warning : 1800Z 18 Oct 03
Last Warning : 0000Z 26 Oct 03, Extratropical
Max Intensity : 125kts
Landfall : None

Total Warnings : 30
Remarks:

1) Typhoon (TY) 20W was first detected as a tropical disturbance approximately 700 NM east of Luzon Island around $0600 Z$ on 15 October and was monitored for approximately 84 hours before first warning was issued. Of note was the near simultaneous development of TY 21W in the Northern Marianas Islands during the development of TY 20W. First warning for TY 21W was issued some 18 hours after the initial warning on TY 20W.

Development for TY 20W was noted as being initially slow, with abrupt consolidation less than 10 hours after being determined a fair suspect area with subsequent issuance of the first warning. Movement of this cyclone was initially very slow as it was located south of a weakness in the subtropical ridge.

The cyclone reached typhoon strength around $1200 Z$ on 20 October due to dual channel upper level poleward and equatorward outflow. The continued weak steering flow caused TY 20W to move slowly poleward as it rapidly intensified over the next 24 hours to maximum intensity of 125 knots by 1200 Z on 21 October. This rapid intensification phase (3.0 Dvorak T-numbers in 36 hours) ended after this time and the cyclone began shifting to a more northeastward track temporarily while slightly weakening.

By 1200 Z on 23 October, TY 20W began to move more northeastward, pass the ridge axis increase track speed to 17 knots due to interaction with the mid-latitude westerlies. Vertical wind shear also increased and extratropical transition commenced. A pronounced dry slot was noted in microwave imagery by $1800 Z$ on 24 October, with an extratropical final warning was issued at 0000 Z on 26 October.
2) No damage reports were received for this cyclone.
*Named by WMO Designated RSMC

Statistics for JTWC on TY20W

DTG	$\begin{array}{\|l\|} \hline \text { WRN } \\ \hline \text { NO. } \\ \hline \end{array}$	BEST TRACK			POSITION ERRORS								WIND ERRORS							
		LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03101812		14.7N	130.3E	25																
03101818	1	14.9 N	130.2E	30	13	42	76	114	133	158			0	-5	-5	10	30	65		
03101900	2	15.2 N	130.2E	35	25	6	26	42	45	80	87	73	0	0	0	-5	25	50	30	-10
03101906	3	15.3 N	130.3E	40	11	29	41	17	21	122	177	262	0	5	0	15	45	- 45	15	0
03101912	4	15.4 N	130.4E	40	11	21	26	6	49	130	184	301	0	-5	15	35	60	55	25	-5
03101918	5	15.5 N	130.6E	45	18	40	36	48	79	110	210	305	0	-5	20	50	55	40	20	-5
03102000	6	15.6N	130.8E	50	17	25	33	71	111	201	281	259	0	10	30	50	40	20	20	-15
03102006	7	15.7N	131.0E	55	11	12	12	26	55	56	111	49	0	20	45	50	40	15	-5	-10
03102012	8	15.9 N	131.0E	65	5	12	29	52	69	41	98	17	0	25	45	35	30	15	-5	-10
03102018	9	16.2N	131.0E	80	0	0	24	60	90	127	267	129	0	20	15	10	5	5	-5	-10
03102100	10	16.4 N	131.1E	95	6	21	50	82	120	233	307	192	0	15	-5	0	15	5	-5	-15
03102106	11	16.6 N	131.2E	115	0	13	36	46	78	165	228	152	5	5	15	25	30	25	0	-20
03102112	12	16.8 N	131.1E	125	18	27	33	40	64	159	233	150	0	10	15	25	25	20	-5	-20
03102118	13	17.1 N	131.1E	125	8	13	19	56	70	121	121		0	5	20	20	15	5	-5	
03102200	14	17.4 N	131.1E	125	5	11	12	29	54	115	140		0	5	10	5	-5	10	15	
03102206	15	17.8N	131.1E	125	8	24	23	23	19	94	440		0	15	20	10	5	-5	15	
03102212	16	18.2N	131.3E	125	8	25	27	32	30	173	498		0	5	0	-5	-5	20	30	
03102218	17	18.5N	131.7E	115	6	31	30	34	24	222			0	0	0	10	10	-		
03102300	18	18.7N	132.1E	110	18	31	43	67	86	309			0	0	0	-5	15	-		
03102306	19	19.0N	132.4E	105	5	19	26	55	98	407			0	5	5	0	-5	-		

03102312	20	19.5 N	132.8 E	105	16	8	23	38	105	402			0	0	5	-5	-5	-	10		
03102318	21	20.0 N	133.2 E	100	5	33	17	26	99				0	5	-5	-	-5				
03102400	22	20.4 N	133.5 E	100	8	50	58	92	187				0	5	-5	-5	-5				
03102406	23	21.0 N	133.7 E	90	0	34	37	72	108				0	-5	-5	-5	-				
03102412	24	21.9 N	134.0 E	85	5	25	34	56	91				0	-	-	-	-	-10			
03102418	25	23.0 N	134.8 E	85	16	8	44	73					0	-	-	-	-	15			

Figure 1-20W-1. $210155 Z$ October 2003 MODIS true color image of 20W (Ketsana), northeast of the Philippines, with a peak intensity of 125 knots.

Figure 1-20W-2. 211246Z October 2003 Goes-9 enhanced infrared satellite imagery of TY 20W (Ketsana), located 500 nm east of Luzon, Philippines at its peak intensity of 125 knots.

Figure 1-20W-3. 220120Z October 2003 Goes-9 visible satellite imagery of TY 20W (Ketsana), the eye was located 500 nm east of Luzon, Philippines at its peak intensity of 125 knots.

TYPHOON 20W (KETSANA)

18-26 OCTOBER 2003

Time Intensity for 20W
Intensity (kts)

Typhoon (TY) 21W (Parma)*

First Poor : 0300Z 18 Oct 03

First Fair : 0730Z 18 Oct 03
First TCFA : $1100 Z 19$ Oct 03
First Warning : 1200Z 20 Oct 03
Last Warning : 0600Z 31 Oct 03
Max Intensity : 130 kts, gusts to 160 kts
Landfall : N/A
Total Warnings : 44
Remarks:

1) Super Typhoon (STY) 21 W developed in the monsoon trough around 18 October, approximately 220 nautical miles north-northeast of Guam. Subsequently, the circulation became more organized and tracked slowly northnorthwestward along the south-western periphery of the subtropical ridge. As the cyclone approached the ridge axis, it rapidly intensified with radial outflow evident in metsat data.

At $0000 Z$ on 23 October, a well defined poleward outflow channel developed due to a passing shortwave trough causing a second rapid intensification phase as the cyclone tracked quickly along the northwestern periphery of the building steering ridge. Intensification slowed 18 hours later as the poleward outflow channel diminshed briefly, but after a short weakening trend, the cyclone re-intensified in a weak vertical wind shear environment and attained a maximum intensity of 130 knots as it tracked eastward along the northern periphery of the subtropical ridge.

STY 21W began tracking equatorward along the eastern periphery of the steering anticyclone and weakened to 80 knots in an environment of marginal vertical wind shear and confluence aloft. As STY 21 W rounded the southeastern quadrant of the steering anticyclone moving westward, it continued to weaken, reaching a minimum intensity of 65 knots approximately 185 nautical miles north of Wake Island.

As STY 21 W tracked rapidly along the equatorward side of the steering anti-cyclone, it re-intensified after 18 hours in an environment of weak vertical wind shear. A mid-latitude trough exiting Asia allowed the cyclone to turn poleward. As the cyclone again crested the western periphery of the subtropical ridge, it reached a second peak in intensity of 115 knots around $1200 Z$ on 29 October. Following this last intensification period, the cyclone began weakening rapidly as it entered an environment of moderate vertical wind shear.

By 0000Z on 30 October, STY 21W began the initial stages of extratropical transition as it interacted with the baroclinic zone and the mid-latitude westerlies while weakening and tracking rapidly northeastward. Within 24 hours, the rapidly weakening cyclone had decoupled from the upper level convection and completed transition into an extratropical low approximately 820 nautical miles north of Wake Island.
2) No reports of damage were received for this cyclone.

*Named by WMO Designated RSMC

Statistics for JTWC on TY21W

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03101806		16.8 N	146.7E	15																
03101812		17.2N	146.4E	15																
03101818		17.6 N	146.1E	15																
03101900		18.0N	145.8E	15																
03101906		18.5 N	145.3E	15																
03101912		19.0N	144.6E	20																
03101918		19.4 N	143.9E	20																
03102000		19.7N	143.5E	20																
03102006		20.1 N	143.1E	20																
03102012	1	20.5 N	142.8E	25	8	68	106	123	134	56			0	-5	-	10	$\overline{20}$	55		
03102018	2	21.0 N	143.2E	30	51	140	169	151	147	70			0	15	15	5	10	55		
03102100	3	21.3 N	143.8E	35	62	124	133	113	97	65	183		0	0	5	0	20	70	90	
03102106	4	21.7 N	144.5E	35	12	41	58	71	51	34	128		0	-5	10	10	30	80	85	
03102112	5	22.0 N	145.2E	45	16	31	32	8	34	138	156		0	5	-5	-5	-	- 80	80	
03102118	6	22.3 N	145.8E	45	12	33	28	37	73	279	350		0	0	5	25	50	85	75	
03102200	7	22.6 N	146.4E	50	5	13	42	91	141	259			0	-5	-	55	$\overline{70}$	90		
03102206	8	23.2N	146.8E	60	18	38	90	133	190	303	479		0	5	- 10	20	-	65	55	
03102212	9	23.7 N	147.4E	65	13	52	72	119	155	248			0	10	-	-	- 75	80		
03102218	10	24.3 N	148.1E	65	13	42	77	126	195	321			0	15	35	65	75	65		
03102300	11	25.2N	149.0E	75	36	62	88	141	180	360			0	20	- 35	60	- 70	-		
03102306	12	26.2N	149.8E	90	0	24	80	175	232	451			0	-5	- 30	-	50	45		

03102312	13	27.1N	150.9E	110	0		32	81	111	222	773			0	-5	45	- 6	$\overline{7}$	$\overline{-}$		
03102318	14	28.2N	152.3E	105	0		33	109	232	414				0	25	- 45	60	60			
03102400	15	29.2N	154.2E	115	13		45	131	314	545				0	25	- 40	50	50			
03102406	16	30.1 N	156.3E	125	0		69	217	429	570				0	15	30	35	40			
03102412	17	30.8 N	158.7E	130	0		102	271	392	506				-5	15	25	30	35			
03102418	18	30.8 N	161.6E	130	15		147	278	452	710	1206			0	10	15	20	15	40		
03102500	19	30.1 N	163.6E	125	0		66	129	271	549	1093			0	10	10	15	15	40		
03102506	20	28.8N	165.5E	120	0		48	87	261	463	897			0	5	0	5	10	40		
03102512	21	27.6N	167.1E	115	17		42	170	381	549	796			0	5	0	0	$\overline{25}$	- 45		
03102518	22	$26.4 N$	168.5E	105	0		73	257	426	585	807			0	0	10	-5	$\overline{3}$	65		
03102600	23	25.1 N	169.3E	95	0		85	299	473	624	804			0	0	0	25	$\overline{35}$	70		
03102606	24	24.0N	169.4E	90	16		78	119	135	147	240	286	765	0	20	10	-5	$\overline{-}$	50	40	5
03102612	25	23.0N	168.8E	80	24		46	78	105	119	164	230	694	0	10	10	15	$\overline{25}$	65	40	5
03102618	26	22.4 N	167.3E	65	11		51	51	84	121	141	255		0	-5	20	-	$\overline{35}$	50	15	
03102700	27	22.2 N	165.8E	65	0		13	73	106	156	94	262		0	15	15	15	-	45	10	
03102706	28	22.2 N	164.5E	65	5		39	57	107	72	176	635		$0-$	10	10	25	30	20	20	
03102712	29	22.0 N	162.6E	75	17		51	68	130	87	151	570		0	0	0	-	-	0	35	
03102718	30	22.0 N	160.4E	75	6		29	66	67	50	175			0	5	10	20	$\overline{25}$	5		
03102800	31	21.9N	158.2E	75	8		38	37	53	30	165			0	-5	15	-	$\overline{30}$	10		
03102806	32	21.9N	156.2E	75	8		30	53	52	16	233			0	20	30	30	$\overline{20}$	20		
03102812	33	22.0 N	154.2E	80	0		23	22	26	46	339			0	15	30	30	$\overline{-}$	25		
03102818	34	22.6 N	152.1E	95	0		13	17	57	132				10	20	20	- 10	0			
03102900	35	23.1 N	150.6E	95	12		16	42	116	171				0	- 15	- 15	0	10			
03102906	36	23.8 N	149.4E	110	8		25	76	157	258				15	15	- 10	0	20			
03102912	37	24.8N	148.9E	115	5		49	121	200	336				-5 0	0	10	15	25			

03102918	38	25.7 N	149.2 E	115	0	38	122	201						0	0	10	20				
03103012	39	28.9 N	153.9 E	90	0	57	209							0	5	15					
03103018	40	29.7 N	156.7 E	80	0	43								5	15						
03103100	41	30.5 N	159.5 E	70	0	59								0	10						
03103106	42	31.4 N	163.1 E	55	0									0							
03103112		32.3 N	167.0 E	45																	

Figure 1-21W-1. 230310 Z October 2003 MODIS true-color image of TY 21W (Parma), north of the Mariana Islands, with an increasing intensity of 90 knots.

Figure 1-21W-2. $240449 Z$ October 2003 Goes-9 visible satellite imagery of TY 21 W (Parma), the eye was located 840 nm northeast of Iwo Jima at its peak intensity of 125 knots.

Figure 1-21W-3. $300315 Z$ October 2003 MODIS true-color image of TY 21W (Parma), north of the Mariana Islands, with an intensity of 100 knots.

TYPHOON 21W (PARMA) 20-31 OCTOBER 2003

Time Intensity for 21W

Intensity (kts)

- KGWC
- PGTW
KWBC
CIRA
CIVS
ODT
- T-Numbers
- Best Track

Typhoon (TY) 21W (Parma)*

First Poor : 0300Z 18 Oct 03
First Fair : 0730Z 18 Oct 03
First TCFA : $1100 Z 19$ Oct 03
First Warning : 1200Z 20 Oct 03
Last Warning : 0600Z 31 Oct 03
Max Intensity : 130 kts, gusts to 160 kts
Landfall : N/A
Total Warnings : 44
Remarks:

1) Super Typhoon (STY) 21W developed in the monsoon trough around 18 October, approximately 220 nautical miles north-northeast of Guam. Subsequently, the circulation became more organized and tracked slowly northnorthwestward along the south-western periphery of the subtropical ridge. As the cyclone approached the ridge axis, it rapidly intensified with radial outflow evident in metsat data.

At $0000 Z$ on 23 October, a well defined poleward outflow channel developed due to a passing shortwave trough causing a second rapid intensification phase as the cyclone tracked quickly along the northwestern periphery of the building steering ridge. Intensification slowed 18 hours later as the poleward outflow channel diminshed briefly, but after a short weakening trend, the cyclone re-intensified in a weak vertical wind shear environment and attained a maximum intensity of 130 knots as it tracked eastward along the northern periphery of the subtropical ridge.

STY 21W began tracking equatorward along the eastern periphery of the steering anticyclone and weakened to 80 knots in an environment of marginal vertical wind shear and confluence aloft. As STY 21 W rounded the southeastern quadrant of the steering anticyclone moving westward, it continued to weaken, reaching a minimum intensity of 65 knots approximately 185 nautical miles north of Wake Island.

As STY 21W tracked rapidly along the equatorward side of the steering anti-cyclone, it re-intensified after 18 hours in an environment of weak vertical wind shear. A mid-latitude trough exiting Asia allowed the cyclone to turn poleward. As the cyclone again crested the western periphery of the subtropical ridge, it reached a second peak in intensity of 115 knots around $1200 Z$ on 29 October. Following this last intensification period, the cyclone began weakening rapidly as it entered an environment of moderate vertical wind shear.

By 0000Z on 30 October, STY 21W began the initial stages of extratropical transition as it interacted with the baroclinic zone and the mid-latitude westerlies while weakening and tracking rapidly northeastward. Within 24 hours, the rapidly weakening cyclone had decoupled from the upper level convection and completed transition into an extratropical low approximately 820 nautical miles north of Wake Island.
2) No reports of damage were received for this cyclone.
*Named by WMO Designated RSMC

Statistics for JTWC on TY21W																				
	WRN	BEST	TRACK			SITI	ON	RRO	RS					ND	ER	RO				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03101806		16.8 N	146.7E	15																
03101812		17.2N	146.4E	15																
03101818		17.6 N	146.1E	15																
03101900		18.0 N	145.8E	15																
03101906		18.5 N	145.3E	15																
03101912		19.0N	144.6E	20																
03101918		19.4 N	143.9E	20																
03102000		19.7N	143.5E	20																
03102006		20.1 N	143.1E	20																
03102012	1	20.5 N	142.8E	25	8	68	106	123	134	56			0	-5	10	10	20	55		
03102018	2	21.0 N	143.2E	30	51	140	169	151	147	70			0	15	15	5	-	55		
03102100	3	21.3 N	143.8E	35	62	124	133	113	97	65	183		0	0	5	0	- 20	70	90	
03102106	4	21.7N	144.5E	35	12	41	58	71	51	34	128		0	-5	10	10	30	80	85	
03102112	5	22.0 N	145.2E	45	16	31	32	8	34	138	156		0	5	-5	-5	- 40	- 80	80	
03102118	6	22.3 N	145.8E	45	12	33	28	37	73	279	350		0	0	5	25	-	85	75	
03102200	7	22.6 N	146.4E	50	5	13	42	91	141	259			0	-5	- 10	-	$\overline{70}$	-90		
03102206	8	23.2 N	146.8E	60	18	38	90	133	190	303	479		0	5	10	20	-	65	55	
03102212	9	23.7N	147.4E	65	13	52	72	119	155	248			0	10	$\overline{-}$	50	- 75	80		
03102218	10	24.3 N	148.1E	65	13	42	77	126	195	321			0	15	- 35	- 65	$\overline{75}$	65		
03102300	11	25.2N	149.0E	75	36	62	88	141	180	360			0	20	- 35	$\overline{60}$	- 70	- 5		
03102306	12	26.2N	149.8E	90	0	24	80	175	232	451			0	-5	30	45	50	45		
03102312	13	27.1 N	150.9E	110	0	32	81	111	222	773			0	-5	45	- 65	$\overline{70}$	35		
03102318	14	28.2N	152.3E	105	0	33	109	232	414				0	25	45	60	- 60			
03102400	15	29.2N	154.2E	115	13	45	131	314	545				0	25	- 40	-	-			
03102406	16	30.1 N	156.3E	125	0	69	217	429	570				0	- 15	$\overline{-}$	-	- 40			

03102412	17	30.8 N	158.7E	130	0	102	271	392	506				-5	15	- 25	- 30	35			
03102418	18	30.8 N	161.6E	130	15	147	278	452	710	1206			0	10	15	$5 \overline{20}^{-}$	$0 \text { - }$	540		
03102500	19	30.1 N	163.6E	125	0	66	129	271	549	1093			0	10	$\overline{-}$	$0 \overline{15}$	$5{ }_{5}^{-}$	540		
03102506	20	28.8N	165.5E	120	0	48	87	261	463	897			0	5	0	5	10	$0-40$		
03102512	21	27.6N	167.1E	115	17	42	170	381	549	796			0	5	0	0	-	545		
03102518	22	26.4 N	168.5E	105	0	73	257	426	585	807			0	0	10	-5	30	65		
03102600	23	25.1 N	169.3E	95	0	85	299	473	624	804			0	0	0	25	$5 \overline{35}$	$5 \overline{70}$		
03102606	24	24.0 N	169.4E	90	16	78	119	135	147	240	286	765	0	20	10	-5	10	$0 \overline{50}$	40	5
03102612	25	23.0 N	168.8E	80	24	46	78	105	119	164	230	694	0	10	10	015	525	565	40	5
03102618	26	22.4 N	167.3E	65	11	51	51	84	121	141	255		0	-5	20	020	035	$5 \overline{-} 50$	15	
03102700	27	22.2 N	165.8E	65	0	13	73	106	156	94	262		0	15	$\overline{5}$	$5 \overline{-}_{15}$	$5 \overline{25}$	545	$5 \overline{10}$	
03102706	28	22.2 N	164.5E	65	5	39	57	107	72	176	635		0	10	$\overline{10}$	$0-\overline{25}$	530	20	20	
03102712	29	22.0 N	162.6E	75	17	51	68	130	87	151	570		0	0	0	10	- 15	${ }^{0}$	35	
03102718	30	22.0 N	160.4E	75	6	29	66	67	50	175			0	5	$\overline{-}$	$0 \overline{20}$	- 25	5^{5}		
03102800	31	21.9 N	158.2E	75	8	38	37	53	30	165			0	-5	15	$5 \overline{30}$	- 30	10		
03102806	32	21.9 N	156.2E	75	8	30	53	52	16	233			0	20	030	$0-\overline{30}$	$0-$	20		
03102812	33	22.0 N	154.2E	80	0	23	22	26	46	339			0	15	$5 \overline{30}$	$0 \overline{30}$	- 10	25		
03102818	34	22.6 N	152.1E	95	0	13	17	57	132					20	20	- 10	0			
03102900	35	23.1 N	150.6E	95	12	16	42	116	171				0	-	- 15		10			
03102906	36	23.8 N	149.4E	110	8	25	76	157	258				15	15		0	20			
03102912	37	24.8N	148.9E	115	5	49	121	200	336				-5	0	10	15	25			
03102918	38	25.7N	149.2E	115	0	38	122	201					0	0	10	120				
03103012	39	28.9 N	153.9E	90	0	57	209						0	5	15					
03103018	40	29.7N	156.7E	80	0	43							5	15						
03103100	41	30.5 N	159.5E	70	0	59							0	10						
03103106	42	31.4 N	163.1E	55	0								0							
03103112		32.3 N	167.0E	45																
			AVERAGE		10	51	108	174	246	374	321	729	1	10	17	724	33	50	50	5
			BIAS										-1	-4				- 46	- 40	5
			\# CASES		42	41	39	38	37	29	11	2		41	39	38	37	29	11	2

Figure 1-21W-1. 230310 Z October 2003 MODIS true-color image of TY 21W (Parma), north of the Mariana Islands, with an increasing intensity of 90 knots.

Figure 1-21W-2. $240449 Z$ October 2003 Goes-9 visible satellite imagery of TY 21W (Parma), the eye was located 840 nm northeast of lwo Jima at its peak intensity of 125 knots.

Figure 1-21W-3. $300315 Z$ October 2003 MODIS true-color image of TY 21W (Parma), north of the Mariana Islands, with an intensity of 100 knots.

TYPHOON 21W (PARMA) 20-31 OCTOBER 2003

Time Intensity for 21W

Tropical Depression (TD) 22W

First Poor : 1130Z 21 Oct 03
First Fair : 2300Z 21 Oct 03
First TCFA : 0600Z 22 Oct 03
First Warning : 0600Z 22 Oct 03
Last Warning : 1800Z 23 Oct 03, Dissipated
Max Intensity : 30 kts, gusts to 40 kts
Landfall : Near Iloilo, Philippines
Total Warnings : 07
Remarks:

1) Tropical Depression (TD) 22 W was first identified as a well defined low level circulation center in the South China Sea and was rapidly upgraded to warning status 18 hours later. The cyclone tracked eastward into an environment of increasing vertical wind shear, failed to develop further and was finaled over land in the Philippines 36 hours after the first warning was issued.
2) No damage reports were received associated with this system.

03102118		11.9 N	113.3 E	25																	
03102200		11.9 N	114.1 E	25																	

Figure 1-22W-1. 220031 Z October 2003 color composite SSM/I satellite imagery of TY 22 W , the partially exposed low level circulation center was located 330 nm southwest of Luzon, Philippines at its peak intensity of 25 knots.

TROPICAL DEPRESSION 22W

22-23 OCTOBER 2003

Time Intensity for 22W

Intensity (kts)

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

Tropical Depression (TD) 22W

First Poor : 1130Z 21 Oct 03
First Fair : 2300Z 21 Oct 03

First TCFA : 0600Z 22 Oct 03
First Warning : 0600Z 22 Oct 03
Last Warning : 1800Z 23 Oct 03, Dissipated

Max Intensity : 30 kts, gusts to 40 kts
Landfall : Near Iloilo, Philippines
Total Warnings : 07
Remarks:

1) Tropical Depression (TD) 22 W was first identified as a well defined low level circulation center in the South China Sea and was rapidly upgraded to warning status 18 hours later. The cyclone tracked eastward into an environment of increasing vertical wind shear, failed to develop further and was finaled over land in the Philippines 36 hours after the first warning was issued.
2) No damage reports were received associated with this system.

Statistics for JTWC on TD22W

Statistics for JTWC on TD22W																				
	WRN	BEST T	TRACK			SITI	ON	RR						ND	ER	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03102100		11.4 N	112.4E	25																
03102106		11.7N	112.2E	25																
03102112		12.0N	112.5E	25																
03102118		11.9N	113.3E	25																

| 03102200 | | 11.9 N | 114.1 E | 25 | | | | | | | | | | | | |
| :--- |

Figure 1-22W-1. 220031 Z October 2003 color composite SSM/I satellite imagery of TY 22W, the partially exposed low level circulation center was located 330 nm southwest of Luzon, Philippines at its peak intensity of 25 knots.

TROPICAL DEPRESSION 22W

22-23 OCTOBER 2003

Time Intensity for 22W

Tropical Storm (TS) 23W

First Poor : N/A
First Fair : 1700Z 21 Oct 03
First TCFA : 2330Z 21 Oct 03

First Warning : 0600Z 23 Oct 03
Last Warning : 0600Z 08 Nov 03
Max Intensity : 35 kts, gusts to 45 kts
Landfall : N/A
Total Warnings : 14
Remarks:

1) Tropical Storm (TS) $23 W$ developed in the monsoon trough in the Gulf of Thailand, then crossed the Isthmus of Kra to move through the Bay of Bengal with tropical storm intensity, following an unusual course of development and tracking. The cyclone subsequently made landfall northwest of Visakhaptnam, India.

Weather observations from oil platforms in the Gulf of Thailand were instrumental in determining the presence and intensity fo the cyclone during the initial period of development.
2) No damage reports were received for this cyclone.

Statistics for JTWC on TS23W																					
	WRN	BEST	TRACK			SI	TIO		RR	ORS					ND	ER	ROR				
DTG	NO.	LAT	LONG	wind	00	12	2		36	48	72	96	120	00	12	24	36	48	72	96	120
03102112		9.1 N	101.4E	25																	
03102118		9.4 N	101.4E	25																	
03102200		9.5 N	101.4E	25																	
03102206		9.6 N	101.4E	25																	
03102212		9.7 N	101.3E	30																	
03102218		9.9 N	101.3E	25																	

Figure 1-23W-1. $261452 Z$ October 2003 multi-sensor satellite imagery of TY 23W, the partially exposed low level circulation center was located 20 nm west of Maldive island at an intensity of 25 knots.

23-28 OCTOBER 2003

Time Intensity for 23W

Intensity (kts)

Tropical Storm (TS) 23W

Abstract

First Poor : N/A First Fair : 1700Z 21 Oct 03 First TCFA : 2330Z 21 Oct 03 First Warning : 0600Z 23 Oct 03 Last Warning : 0600Z 08 Nov 03 Max Intensity : 35 kts, gusts to 45 kts Landfall : N/A Total Warnings : 14 Remarks: 1) Tropical Storm (TS) 23W developed in the monsoon trough in the Gulf of Thailand, then crossed the Isthmus of Kra to move through the Bay of Bengal with tropical storm intensity, following an unusual course of development and tracking. The cyclone subsequently made landfall northwest of Visakhaptnam, India.

Weather observations from oil platforms in the Gulf of Thailand were instrumental in determining the presence and intensity fo the cyclone during the initial period of development. 2) No damage reports were received for this cyclone.

Statistics for JTWC on TS23W																					
	WRN	BEST	TRACK			SI	ITIO	ON	ERR	ORS					ND	ER	ROR				
DTG	NO.	LAT	LONG	wind	00	12	2	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03102112		9.1 N	101.4E	25																	
03102118		9.4 N	101.4E	25																	
03102200		9.5 N	101.4E	25																	
03102206		9.6 N	101.4E	25																	
03102212		9.7 N	101.3E	30																	
03102218		9.9 N	101.3E	25																	
03102300		10.1 N	101.1E	25																	

03102306	1	10.4 N	101.0 E	25	31	50	106	139	88	91			0	5	10	15	20	25		
03102312	2	10.7 N	101.0 E	25	29	46	73	67	48	26			0	5	10	15	20	25		
03102318	3	11.0 N	101.1 E	25	8	34	51	48	89	112			0	5	10	15	20	20		
03102400	4	11.4 N	101.0 E	25	11	38	18	61	74	125			0	5	5	15	20	15		
03102406	5	11.7 N	100.8 E	25	18	42	60	93	123	214			0	5	10	15	20	15		
03102412	6	12.1 N	100.3 E	25	8	23	82	111	121	256			0	5	10	15	20	15		
03102418	7	12.5 N	99.6 E	25	6	63	96	114	155				0	5	10	15	15			
03102506	8	12.5 N	97.4 E	25	0	39	36	63	104				0	0	5	10	10			
03102518	9	13.2 N	95.1 E	25	8	35	68	74	100				0	5	5	5	10			
03102606	10	13.3 N	93.3 E	25	24	36	50	86	84				0	0	0	5	15			
03102618	11	13.6 N	91.4 E	30	0	30	81	100					0	0	10	15				
03102706	12	14.6 N	88.9 E	35	0	71	117							0	5	15				
03102718	13	16.3 N	86.0 E	35	37	12							0	10						
03102806	14	18.2 N	84.0 E	30	0								0							
03102812		18.7 N	83.4 E	30																
			AVERAGE		13	40	70	87	99	137			0	4	8	13	17	19		
			BIAS										0	4	8	13	17	19		
			\# CASES		14	13	12	11	10	6			14	13	12	11	10	6		

Figure 1-23W-1. $261452 Z$ October 2003 multi-sensor satellite imagery of TY 23W, the partially exposed low level circulation center was located 20 nm west of Maldive island at an intensity of 25 knots.

TROPICAL STORM 23W

Time Intensity for 23W
Intensity (kts)

Typhoon (TY) 24W (Melor)*

First Poor : 0600Z 28 Oct 03
First Fair : 1430Z 28 Oct 03
First TCFA : 0330Z 30 Oct 03
First Warning : 0300Z 30 Oct 03
Last Warning : 0000Z 04 Nov 03, Extratropical
Max Intensity : 70 kts, gusts to 85 kts
Landfall : Luzon
Total Warnings : 20

Remarks:

1) Typhoon (TY) 24 W was noted as a tropical disturbance north-northeast of Palau on the tropical weather advisory on 28 October, 2003. Located in an area of moderate vertical wind shear and relatively weak upper level diffluence, the cyclone developed slowly for 48 hours. The vertical wind shear decreased by 0000 Z on 30 October, at which time the rate of development increased and a first warning was issued by 0300 Z on 30 October.

TY 24W steering was influenced by a low to mid-level ridge to the east of the system, creating a westnorthwestward track. Intensification was slightly greater than the climatological mean, with 1.5 Dvorak Tnumber/day intensification rate for approximately 48 hours after the first warning.

At approximately 0000 Z on 01 November, TY 24 W made landfall south of Palanan, Luzon, Philippines with maximum intensity of 75 knots. TY 24 W subsequently weakened due to land interaction and altered track toward the northwest. The cyclone moved over open water, north of Luzon, along the western periphery of the mid-level ridge to the east.

By 0000 Z on 2 November, TY 24W began to move more northward as it passed the axis of the steering ridge. After 12 hours of north movement, the cyclone began extratropical transition, which was completed by $0000 Z$ on 4 November, when the final warning was issued.
2) No reports of damage were received on this cyclone.
*Named by WMO Designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03102818		11.4 N	133.1E	15																
03102900		11.6 N	132.4E	15																
03102906		11.8 N	131.7E	15																
03102912		12.1 N	130.9E	15																
03102918		12.3 N	130.2E	25																
03103000		12.6 N	129.4E	25																
03103006	1	13.0 N	128.7E	25	8	25	68	86	67	19			0	-5	15	25	25	15		
03103012	2	13.5 N	127.8E	35	11	46	94	63	51	67	212		0	10	25	30	20	25	20	
03103018	3	14.0N	126.9E	35	5	6	13	31	51	272	528		0	-5	15	15	0	10	20	
03103100	4	14.7N	125.9E	45	13	48	32	0	91	337	566		0	-5	- 10	5	15	20	15	
03103106	5	15.3 N	124.7E	50	5	38	36	38	103	319			0	0	10	0	10	15		
03103112	6	15.9N	123.6E	65	13	31	13	54	100	296			0	0	0	15	10	15		
03103118	7	16.4 N	122.9E	65	6	29	83	127	215	432			0	15	-5	5	5	5		
03110100	8	16.8 N	122.4E	75	0	55	106	177	295	495			-5	-5	5	10	15	10		
03110106	9	17.6 N	121.8E	70	26	84	127	214	338				5	0	10	15	15			
03110112	10	18.7N	121.0E	65	6	54	130	264	378				10	10	15	20	10			
03110118	11	19.5 N	120.8E	65	0	18	92	223	328				0	5	5	10	0			
03110200	12	20.1 N	120.7E	60	8	29	121	224	295				0	-5	5	0	0			
03110206	13	20.7N	120.6E	60	5	66	162	235					0	0	5	-5				
03110212	14	21.3 N	120.8E	60	11	86	180	264					0	10	0	5				
03110218	15	22.0 N	121.3E	55	5	50	74						0	0	- 10					
03110300	16	22.7 N	121.9E	45	11	53	95							- 10	- 10					

| 03110306 | 17 | 23.1 N | 122.6 E | 45 | 16 | 47 | | | | | | | | | 0 | - | | | | |
| :--- |

Figure 1-24W-1. $312325 Z$ October 2003 multi-spectral satellite imagery of TY 24W, the eye was located on the coast of Luzon, Philippines at its peak intensity of 75 knots.

TYPHOON 24W (MELOR) 30 OCTOBER - 04 NOVEMBER 2003

Time Intensity for 24 W

Intensity (kts)

Fix Date (Zulu)

Typhoon (TY) 24W (Melor)*

First Poor : 0600Z 28 Oct 03
First Fair : 1430Z 28 Oct 03
First TCFA : 0330Z 30 Oct 03
First Warning : 0300Z 30 Oct 03
Last Warning : 0000Z 04 Nov 03, Extratropical
Max Intensity : 70 kts, gusts to 85 kts
Landfall : Luzon

Total Warnings : 20
Remarks:

1) Typhoon (TY) 24 W was noted as a tropical disturbance north-northeast of Palau on the tropical weather advisory on 28 October, 2003. Located in an area of moderate vertical wind shear and relatively weak upper level diffluence, the cyclone developed slowly for 48 hours. The vertical wind shear decreased by $0000 Z$ on 30 October, at which time the rate of development increased and a first warning was issued by 0300 Z on 30 October.

TY 24 W steering was influenced by a low to mid-level ridge to the east of the system, creating a westnorthwestward track. Intensification was slightly greater than the climatological mean, with 1.5 Dvorak Tnumber/day intensification rate for approximately 48 hours after the first warning.

At approximately 0000 Z on 01 November, TY 24W made landfall south of Palanan, Luzon, Philippines with maximum intensity of 75 knots. TY 24 W subsequently weakened due to land interaction and altered track toward the northwest. The cyclone moved over open water, north of Luzon, along the western periphery of the mid-level ridge to the east.

By 0000Z on 2 November, TY 24W began to move more northward as it passed the axis of the steering ridge. After 12 hours of north movement, the cyclone began extratropical transition, which was completed by 0000Z on 4 November, when the final warning was issued.
2) No reports of damage were received on this cyclone.
*Named by WMO Designated RSMC

			BIAS										1	-3	-3	1	3	2	-8	
			\# CASES		20	18	16	14	12	8	3		20	18	16	14	12	8	3	

Figure 1-24W-1. $312325 Z$ October 2003 multi-spectral satellite imagery of TY 24W, the eye was located on the coast of Luzon, Philippines at its peak intensity of 75 knots.

TYPHOON 24W (MELOR)

30 OCTOBER - 04 NOVEMBER 2003

Time Intensity for 24W
Intensity (kts)

Fix Date (Zulu)

Typhoon (TY) 25W (Nepartak)*

First Poor : 0000Z 11 Nov 03
First Fair : $1130 Z 11$ Nov 03
First TCFA : 2030Z 11 Nov 03
First Warning : 1200Z 12 Nov 03
Last Warning : $1200 Z 19$ Nov 03, Dissipated
Max Intensity : 75 kts , gusts to 90 kts
Landfall : Central Philippines, Hainan Island and Beihai, China
Total Warnings : 29
Remarks:

1) Typhoon (TY) 25W was first noted as an area of deep convection over broad surface troughing around 11 November northeast of Yap. After the cyclone developed and the first warning was issued, the cyclone began moving westward in response to the subtropical ridge situated to the north. As TY 08W tracked westward over the Philippines, land effects resulted in a brief period of weakening, however re-intensification occurred over open water in the South China Sea.

By $0600 Z$ on 16 November, TY 25W began tracking more poleward, along the western periphery of the steering ridge, subsequently making landfall a second time along the southwest coast of Hainan Island. A third and final landfall occurred on the south coast of China at around 1100 Z on 19 November. The cyclone dissipated rapidly and a final warning was issued by 1200 Z on 19 November.

While TY 25W attained a maximum intensity of 75 knots, no well-formed eye was ever evident, though indications of a weak eye were noted in microwave satellite imagery. Typhoon classification came from the well-developed banding features rather than any eye feature.
2) Damages reported in the Philippines included report of four casualties, On Hainan Island reports indicated significant crop destruction, loss of livestock and approximately 800 homes destroyed.
Damages on Hainan were estimated at near 197 million U.S. dollars. Rains brought by the cyclone filled resevoirs and helped to relive the summer drought, reported as the worst since 1939.
*Named by WMO Designated RSMC

	WRN BEST TRACK				POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03111112		10.7 N	141.2E	15																
03111118		11.2 N	139.5E	15																
03111200		11.5 N	137.8E	20																
03111206		11.8 N	135.9E	25																
03111212	1	12.0 N	134.0E	35	24	36	59	101	138	122			-5	10	-5	5	10	10		
03111218	2	12.2 N	132.1E	40	33	12	43	76	49	48	68	70	0	10	15	0	0	15	20	45
03111300	3	12.3 N	130.2E	45	24	30	17	21	56	100	104	158	0	5	5	-5	0	5	25	35
03111306	4	12.3 N	128.3E	45	11	30	38	34	78	114	89	148	0	5	0	0	5	5	25	25
03111312	5	12.3 N	126.4E	50	13	26	37	65	105	126	96	149	0	5	5	5	10	10	5	0
03111318	6	12.2 N	124.5E	50	18	27	65	84	118	149	137	208	0	0	5	0	0	30	30	-25
03111400	7	12.1 N	122.7E	50	16	53	97	126	128	108	141	255	0	10	-5	5	0	10	45	-25
03111406	8	12.1 N	121.1E	55	18	73	134	149	130	129	220	360	0	5	5	5	10	$\overline{-}$	40	-10
03111412	9	12.2 N	119.9E	60	8	71	130	138	148	154	261	450	5	10	10	5	10	15	-	0
03111418	10	12.4 N	118.9E	60	16	75	118	121	154	166	240		0	0	5	0	10	- 15	20	
03111500	11	12.9 N	117.8E	65	26	60	51	72	84	145	221		0	5	0	-5	-5	30	- 15	
03111506	12	13.5N	116.8E	65	0	21	51	71	99	133	155		0	5	0	-5	-5	- 30	-5	
03111512	13	13.9N	115.9E	65	0	48	54	66	110	183	227		0	-5	0	0	10	25	0	
03111518	14	14.1N	114.9E	65	23	54	68	104	135	207			0	-5	-5	0	- 20	20		
03111600	15	14.3 N	113.9E	75	37	48	74	129	165	240			0	5	5	-5	30	20		
03111606	16	14.7N	112.9E	75	0	17	29	17	26	33			0	5	10	0	- 20	5		

03111612	17	15.2 N	112.0E	75	8	12	19	29	46	137			0	5	0	20	10	10		
03111618	18	15.7N	111.1E	75	0	13	42	63	103				0	5	0	10	5			
03111700	19	16.1 N	110.3E	70	16	47	81	112	173				0	0	15	0	-5			
03111706	20	16.4 N	109.7E	65	0	26	50	86	132				0	10	20	-5	5			
03111712	21	16.9N	109.3E	65	11	37	58	112	170				0	15	0	0	15			
03111718	22	17.5N	109.0E	65	6	13	56	107					0	10	5	15				
03111800	23	18.1N	108.8E	75	0	11	16	49					0	20	20	25				
03111806	24	18.7N	108.6E	70	5	6	38						0	10	20					
03111812	25	19.2N	108.5E	55	5	42	104						0	5	20					
03111818	26	19.8 N	108.6E	50	12	48							0	10						
03111900	27	20.4 N	108.9E	45	13	40							0	15						
03111906	28	21.0 N	109.3E	30	16								0							
03111912	29	21.7 N	109.7E	20	0								0							
			AVERAGE		13	36	61	84	112	135	163	225	0	7	7	5	9	16	21	21
			BIAS										0	2	3	0	-5	10	-9	6
			\# CASES		29	27	25	23	21	17	12	8	29	27	25	23	21	17	12	8

Figure 1-25W-1. $160125 Z$ November 2003 GOES-9 visible satellite image of TY 25W (Nepartak), located in the south China sea, with a peak intensity of 75 knots.

Figure 1-25W-2. $160145 Z$ November 2003 multi-sensor satellite images of TY 25W (Nepartak), located in the south China sea, with a peak intensity of 75 knots.

Figure 1-25W-3. $170320 Z$ November 2003 MODIS true-color image of TY 25W (Nepartak), located off Vietnam, with an intensity of 65 knots.

TYPHOON 25W (NEPARTAK)

12-19 NOVEMBER 2003

Time Intensity for 25 W
Intensity (kts)

Typhoon (TY) 25W (Nepartak)*

First Poor : 0000Z 11 Nov 03

First Fair : $1130 Z 11$ Nov 03

First TCFA : 2030Z 11 Nov 03

First Warning : 1200Z 12 Nov 03
Last Warning : 1200Z 19 Nov 03, Dissipated
Max Intensity : 75 kts, gusts to 90 kts
Landfall : Central Philippines, Hainan Island and Beihai,China
Total Warnings : 29
Remarks:

1) Typhoon (TY) 25 W was first noted as an area of deep convection over broad surface troughing around 11 November northeast of Yap. After the cyclone developed and the first warning was issued, the cyclone began moving westward in response to the subtropical ridge situated to the north. As TY 08W tracked westward over the Philippines, land effects resulted in a brief period of weakening, however re-intensification occurred over open water in the South China Sea.

By $0600 Z$ on 16 November, TY 25W began tracking more poleward, along the western periphery of the steering ridge, subsequently making landfall a second time along the southwest coast of Hainan Island. A third and final landfall occurred on the south coast of China at around 1100 Z on 19 November. The cyclone dissipated rapidly and a final warning was issued by 1200 Z on 19 November.

While TY 25W attained a maximum intensity of 75 knots, no well-formed eye was ever evident, though indications of a weak eye were noted in microwave satellite imagery. Typhoon classification came from the well-developed banding features rather than any eye feature.
2) Damages reported in the Philippines included report of four casualties, On Hainan Island reports indicated significant crop destruction, loss of livestock and approximately 800 homes destroyed. Damages on Hainan were estimated at near 197 million U.S. dollars. Rains brought by the cyclone filled resevoirs and helped to relive the summer drought, reported as the worst since 1939.
*Named by WMO Designated RSMC

Statistics for JTWC on TY25W																				
	WRN	BEST T	TRACK			SIT	TION	ERR	RORS					ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03111112		10.7 N	141.2E	15																
03111118		11.2 N	139.5E	15																
03111200		11.5 N	137.8E	20																
03111206		11.8 N	135.9E	25																
03111212	1	12.0N	134.0E	35	24	36	59	101	138	122			-5	10	-5	5	10	10		
03111218	2	12.2 N	132.1E	40	33	12	43	76	49	48	68	70	0	10	15	0	0	15	20	45
03111300	3	12.3 N	130.2E	45	24	30	17	21	56	100	104	158	0	5	5	-5	0	5	25	35
03111306	4	12.3 N	128.3E	45	11	30	38	34	78	114	89	148	0	5	0	0	5	5	25	25
03111312	5	12.3 N	126.4E	50	13	26	37	65	105	126	96	149	0	5	5	5	10	10	5	0
03111318	6	12.2N	124.5E	50	18	27	65	84	118	149	137	208	0	0	5	0	0	30	30	-25
03111400	7	12.1 N	122.7E	50	16	53	97	126	128	108	141	255	0	10	-5	5	0	10	-	-25
03111406	8	12.1 N	121.1E	55	18	73	134	149	130	129	220	360	0	5	5	5	10	10	- 40	-10
03111412	9	12.2N	119.9E	60	8	71	130	138	148	154	261	450	5	10	10	5	10	15	25	0
03111418	10	12.4 N	118.9E	60	16	75	118	121	154	166	240		0	0	5	0	10	15	20	
03111500	11	12.9N	117.8E	65	26	60	51	72	84	145	221		0	5	0	-5	-5	30	15	
03111506	12	13.5N	116.8E	65	0	21	51	71	99	133	155		0	5	0	-5	-5	30	-5	
03111512	13	13.9N	115.9E	65	0	48	54	66	110	183	227		0	-5	0	0	10	25	0	
03111518	14	14.1 N	114.9E	65	23	54	68	104	135	207			0	-5	-5	0	- 20	20		
03111600	15	14.3N	113.9E	75	37	48	74	129	165	240			0	5	5	-5	30	20		
03111606	16	14.7N	112.9E	75	0	17	29	17	26	33			0	5	10	0	- 20	5		
03111612	17	15.2N	112.0E	75	8	12	19	29	46	137			0	5	0	- 20	- 10	10		
03111618	18	15.7N	111.1E	75	0	13	42	63	103				0	5	0	- 10	5			
03111700	19	16.1 N	110.3E	70	16	47	81	112	173				0		- 15	0	-5			

03111706	20	16.4 N	109.7 E	65	0	26	50	86	132				0	-	-	-5	5				
03111712	21	16.9 N	109.3 E	65	11	37	58	112	170				0	-	0	0	15				
03111718	22	17.5 N	109.0 E	65	6	13	56	107					0	-	-10	5	15				
03111800	23	18.1 N	108.8 E	75	0	11	16	49					0	20	20	25					
03111806	24	18.7 N	108.6 E	70	5	6	38						0	10	20						
03111812	25	19.2 N	108.5 E	55	5	42	104						0	5	20						
0311818	26	19.8 N	108.6 E	50	12	48							0	10							
03111900	27	20.4 N	108.9 E	45	13	40							0	0	15						
03111906	28	21.0 N	109.3 E	30	16								0								
03111912	29	21.7 N	109.7 E	20	0								0								
			AVERAGE		13	36	61	84	112	135	163	225	0	7	7	5	9	16	21	21	
			BIAS										0	2	3	0	-5	-	-9	6	
			\# CASES		29	27	25	23	21	17	12	8	29	27	25	23	21	17	12	8	

Figure 1-25W-1. $160125 Z$ November 2003 GOES-9 visible satellite image of TY 25W (Nepartak), located in the south China sea, with a peak intensity of 75 knots.

Figure 1-25W-2. $160145 Z$ November 2003 multi-sensor satellite images of TY 25W (Nepartak), located in the south China sea, with a peak intensity of 75 knots.

Figure 1-25W-3. $170320 Z$ November 2003 MODIS true-color image of TY 25W (Nepartak), located off Vietnam, with an intensity of 65 knots.

TYPHOON 25W (NEPARTAK)

12-19 NOVEMBER 2003

Time Intensity for 25W
Intensity (kts)

- KGWC
-
PGTW
KWBC
CIRA
- CIMS
- T-Numbers
- Best Track

Fix Date (Zulu)

Super Typhoon (STY) 26W (Lupit)*

First Poor : 0900Z 15 Nov 03
First Fair : 2100Z 17 Nov 03

First TCFA : $0230 Z 17$ Nov 03
First Warning : 1800Z 20 Nov 03
Last Warning : 0600Z 01 Dec 03, Extratropical
Max Intensity : 145 kts, gusts to 175 kts
Landfall : N/A
Total Warnings : 47
Remarks:

1) Super typhoon (STY) 26W developed in the monsoon trough around 14 November, approximately 360 nautical miles northeast of Kwajalein atoll; first warning was issued at 1800 Z on 19 November. The cyclone remained below tropical storm strength for 24 hours while moving southwestward along the southeastern periphery of a mid-level steering ridge centered to the north-northwest. STY 26W subsequently tracked westward along the southern periphery of the subtropical ridge over the next three days passing within 90 nautical miles of Chuuk at approximately $0800 Z$ on 22 November.

The cyclone intensified steadily after 20 November and attained super typhoon intensity at 0000 Z on 26 November. STY 26W began to move more northwestward early on 24 November, along the southwestern quadrant of the mid-level steering ridge, and achieved maximum intensity of 145 knots at $1200 Z$ on 27 Novermber in the Philippine Sea.

STY 26W begand tracking poleward toward a weakness in the subtropical ridge produced by a midlatitude trough in the westerlies. The cyclone began to weaken as it approached the ridge axis in response to increased vertical wind shear. After STY 26W crested the ridge axis at around 0600 Z on 29 November, it continued to weaken as it encountered cooler sea surface temperatures, drier air, and increased vertical wind shear associated with a mid-latitude baroclinic zone. The cyclone started to undergo extratropical transition, while accelerating northeastward, and completed extratropical transition around $0600 Z$ on 01 December, approximately 340 nautical miles south of Tokyo, Japan.
2) No casualties were reported for this cyclone, but severe damage was reported to trees and crops on Yap and Ulithi atoll.
*Named by WMO Designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03111412		12.8 N	172.3E	20																
03111418		13.3 N	171.9E	20																
03111500		13.7 N	171.5E	20																
03111506		14.0 N	171.1E	20																
03111512		14.2 N	170.6E	20																
03111518		14.2 N	170.0E	15																
03111600		14.2 N	169.2E	15																
03111606		14.2 N	168.4E	15																
03111612		13.9 N	167.6E	15																
03111618		13.3 N	167.2E	15																
03111700		12.7 N	167.0E	15																
03111706		12.1 N	166.9E	15																
03111712		11.5 N	166.8E	15																
03111718		11.0 N	166.4E	15																
03111800		10.9 N	165.7E	20																
03111806		10.9 N	165.1E	20																
03111812		10.9 N	164.4E	25																
03111818		10.9N	163.7E	25																
03111900		10.6N	163.1E	25																
03111906		10.0N	162.7E	25																
03111912		9.5 N	162.3E	25																
03111918	1	9.1 N	162.0E	25	18	65	130	142	122	80	178	193	0	0	0	10	10	0	0	0
03112000	2	9.0 N	161.6E	25	8	36	91	71	43	110	145	65	0	0	0	5	-5	-5	0	0
03112006	3	8.9 N	161.2E	30	8	21	40	56	88	156	92	107	-5	-5	0	0	- 10	-	- 10	-15
03112012	4	8.9 N	160.8E	30	5	24	24	62	85	166	160	148	0	5	5	-5	-5	- 10	-5	-5

03112018	5	8.9N	160.2E	35	5	12	72	117	154	201	114	110	0	5	10	-5	0	10	20	20
03112100	6	9.0 N	159.4E	35	36	113	163	213	250	228	127	115	0	5	-5	-5	-5	10	20	15
03112106	7	9.1 N	158.2E	35	17	1774	133	175	211	155	116	96	0	-5	15	15	10	10	10	5
03112112	8	9.0 N	156.8E	40	16	654	85	128	153	156	144	316	-5	20	20	15	10	5	10	5
03112118	9	8.8 N	155.4E	45	5	42	60	88	102	131	176	272	0	-5	0	0	5	10	5	15
03112200	10	8.8 N	153.9E	60	13	13	32	68	97	95	97	149	0	5	15	15	20	15	-5	-10
03112206	11	8.8N	152.3E	65	5	30	84	112	136	77	106	109	0	5	10	10	20	5	15	10
03112212	12	8.8N	150.7E	70	13	363	121	175	202	130	169	134	0	0	0	5	10	5	15	15
03112218	13	8.8N	149.1E	75	8	75	118	181	198	166	216	186	0	0	0	10	10	0	15	5
03112300	14	8.2N	147.8E	80	18	875	139	187	171	152	169	139	0	0	5	10	10	-5	10	-5
03112306	15	7.9N	146.6E	85	0	13	79	89	64	74	55	58	5	5	15	15	10	10	-5	-5
03112312	16	7.8N	145.5E	90	0	19	54	51	54	60	35	42	5	10	15	15	10	10	10	-10
03112318	17	7.8N	144.5E	95	18	877	55	30	36	50	75	93	0	15	10	5	10	15	15	-10
03112400	18	8.1 N	143.8E	95	25	55	61	76	71	87	122	147	0	5	10	5	0	15	25	-10
03112406	19	8.5N	143.1E	95	18	849	88	113	107	134	163	179	0	0	-5	0	15	25	30	-5
03112412	20	9.1 N	142.2E	100	0	48	95	82	64	122	138	120	-5	0	-5	10	20	35	30	-5
03112418	21	9.9N	141.1E	105	8	36	46	30	25	52	58	136	-5	5	10	0	5	10	20	40
03112500	22	10.7 N	139.9E	105	13	324	19	30	13	38	120	273	0	5	0	-5	0	5	25	35
03112506	23	11.4 N	138.7E	115	13	21	29	26	13	42	108	324	0	5	-5	0	0	0	20	15
03112512	24	12.0 N	137.7E	115	16	635	45	46	39	46	133	404	0	-5	10	-5	10	10	10	10
03112518	25	12.2 N	137.1E	120	0	30	46	42	40	78	177	403	0	10	0	5	10	15	30	25
03112600	26	12.6 N	136.7E	130	12	246	35	48	45	120	177	364	0	5	10	10	20	35	40	35
03112606	27	13.1 N	136.3E	140	13	13	21	30	18	97	188	358	0	5	10	20	15	40	35	30
03112612	28	13.6 N	136.0E	140	13	8	6	25	24	59	183	348	5	10	10	15	10	30	30	20
03112618	29	13.8 N	135.4E	140	5	25	38	34	60	21	130	207	0	5	15	10	5	20	20	20
03112700	30	14.1 N	134.9E	140	0	12	33	41	74	51	152	204	5	0	15	15	15	15	25	20
03112706	31	14.5 N	134.3E	140	5	23	29	53	81	78	156	291	5	15	10	10	20	15	15	15
03112712	32	15.0 N	133.8E	145	0	24	8	40	45	110	132		0	10	0	15	15	10	5	

03112718	33	15.3N	133.2E	135	0	6	26	58	25	130	150		5	5	5	15	10	10	0	
03112800	34	15.6N	132.8E	135	8	35	66	75	73	181	193		5	0	10	10	0	15	5	
03112806	35	16.4 N	132.3E	135	11	21	47	21	33	84	158		5	10	10	0	15	5	5	
03112812	36	17.1 N	131.9E	135	12	29	40	13	23	77			5	10	0	15	20	0		
03112818	37	17.7N	131.3E	125	0	26	18	48	81	101			0	5	10	25	20	15		
03112900	38	18.4 N	130.8E	115	11	21	89	188	234	175			0	10	20	30	20	15		
03112906	39	19.2N	130.5E	105	5	34	68	117	84	113			0	10	25	15	15	10		
03112912	40	20.1 N	130.9E	105	13	49	75	101	72				-5	15	25	10	10			
03112918	41	21.1 N	131.7E	100	21	28	66	73	36				-5	15	10	10	15			
03113000	42	22.1 N	132.6E	100	26	49	80	82	66				10	20	-5	10	10			
03113006	43	23.3N	134.0E	100	28	76	73	35	69				10	-5	0	-5	-5			
03113012	44	24.6N	135.4E	95	13	37	36	24					10	0	0	-5				
03113018	45	25.8N	137.5E	80	16	89	138	250					10	- 10	15	10				
03120100	46	27.7N	138.8E	70	36	68	117						10	- 15	15					
03120106	47	29.6N	140.0E	65	31	57	90						-5	10	10					
03120112		30.9 N	142.0E	60																
03120118		32.2 N	144.3E	60																
03120200		34.0 N	146.3E	55																
03120206		35.7 N	148.6E	50																
			AVERAGE		12	40	66	83	86	107	138	196	3	7	9	10	11	13	15	14
			BIAS										-1	0	0	1	0	3	5	6
			\# CASES		47	47	47	45	43	39	35	31	47	47	47	45	43	39	35	31

Figure 1-26W-1. $260135 Z$ November 2003 MODIS true color image of 26W (Lupit), north of Yap, with an intensity of 130 knots.

Figure 1-26W-2. 260702 Z November 2003 GOES-9 visible satellite image of TY 26W (Lupit), located 625 nm east of the Philippines, with a peak intensity of 145 knots.

Figure 1-26W-3. 261202 Z November 2003 multi-sensor satellite images of TY 26W (Lupit), located 625 nm east of the Philippines, with a peak intensity of 145 knots.

SUPER TYPHOON 26W (LUPIT)
 20 NOVEMBER - 01 DECEMBER 2003

Time Intensity for 26W

Intensity (kts)

- KGWC
-
- PGTW
- KWBC
CIRA
- CIMS
- ODT
- T-Numbers
- Best Track

Fix Date (Zulu)

Super Typhoon (STY) 26W (Lupit)*

First Poor : 0900Z 15 Nov 03
First Fair : 2100Z 17 Nov 03
First TCFA : 0230Z 17 Nov 03

First Warning : 1800Z 20 Nov 03
Last Warning : 0600Z 01 Dec 03, Extratropical
Max Intensity : 145 kts, gusts to 175 kts
Landfall : N/A

Total Warnings : 47
Remarks:

1) Super typhoon (STY) 26W developed in the monsoon trough around 14 November, approximately 360 nautical miles northeast of Kwajalein atoll; first warning was issued at 1800 Z on 19 November. The cyclone remained below tropical storm strength for 24 hours while moving southwestward along the southeastern periphery of a mid-level steering ridge centered to the north-northwest. STY 26W subsequently tracked westward along the southern periphery of the subtropical ridge over the next three days passing within 90 nautical miles of Chuuk at approximately $0800 Z$ on 22 November.

The cyclone intensified steadily after 20 November and attained super typhoon intensity at 0000Z on 26 November. STY 26W began to move more northwestward early on 24 November, along the southwestern quadrant of the mid-level steering ridge, and achieved maximum intensity of 145 knots at 1200 Z on 27 Novermber in the Philippine Sea.

STY 26W begand tracking poleward toward a weakness in the subtropical ridge produced by a midlatitude trough in the westerlies. The cyclone began to weaken as it approached the ridge axis in response to increased vertical wind shear. After STY 26W crested the ridge axis at around 0600Z on 29 November, it continued to weaken as it encountered cooler sea surface temperatures, drier air, and increased vertical wind shear associated with a mid-latitude baroclinic zone. The cyclone started to undergo extratropical transition, while accelerating northeastward, and completed extratropical transition around $0600 Z$ on 01 December, approximately 340 nautical miles south of Tokyo, Japan.
2) No casualties were reported for this cyclone, but severe damage was reported to trees and crops on Yap and Ulithi atoll.
*Named by WMO Designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03111412		12.8 N	172.3E	20																
03111418		13.3 N	171.9E	20																
03111500		13.7 N	171.5E	20																
03111506		14.0N	171.1E	20																
03111512		14.2 N	170.6E	20																
03111518		14.2 N	170.0E	15																
03111600		14.2 N	169.2E	15																
03111606		14.2N	168.4E	15																
03111612		13.9 N	167.6E	15																
03111618		13.3N	167.2E	15																
03111700		12.7 N	167.0E	15																
03111706		12.1 N	166.9E	15																
03111712		11.5 N	166.8E	15																
03111718		11.0N	166.4E	15																
03111800		10.9 N	165.7E	20																
03111806		10.9N	165.1E	20																
03111812		10.9 N	164.4E	25																
03111818		10.9N	163.7E	25																
03111900		10.6N	163.1E	25																
03111906		10.0N	162.7E	25																
03111912		9.5 N	162.3E	25																
03111918	1	9.1 N	162.0E	25	18	65	130	142	122	80	178	193	0	0	0	10	10	0	0	0
03112000	2	9.0 N	161.6E	25	8	36	91	71	43	110	145	65	0	0	0	5	-5	-5	0	0
03112006	3	8.9 N	161.2E	30	8	21	40	56	88	156	92	107	-5	-5	0	0	- 10	-	$\overline{-}$	-15
03112012	4	8.9 N	160.8E	30	5	24	24	62	85	166	160	148	0	5	5	-5	-5	- 10	-5	-5
03112018	5	8.9 N	160.2E	35	5	12	72	117	154	201	114	110	0	5	10	-5	0	10	20	20
03112100	6	9.0 N	159.4E	35	36	113	163	213	250	228	127	115	0	5	-5	-5	-5	10	20	15
03112106	7	9.1 N	158.2E	35	17	74	133	175	211	155	116	96	0	-5	-	- 15	- 10	10	10	5

03112112	8	9.0 N	156.8 E	40	16	54	85	128	153	156	144	316	-5	20	20	15	10	5	10	5
03112118	9	8.8 N	155.4 E	45	5	42	60	88	102	131	176	272	0	-5	0	0	5	10	5	-15
03112200	10	8.8 N	153.9 E	60	13	13	32	68	97	95	97	149	0	5	15	15	20	15	-5	-10
03112206	11	8.8 N	152.3 E	65	5	30	84	112	136	77	106	109	0	5	10	10	20	5	-	-10
03112212	12	8.8 N	150.7 E	70	13	63	121	175	202	130	169	134	0	0	0	5	10	5	-	-15
03112218	13	8.8 N	149.1 E	75	8	75	118	181	198	166	216	186	0	0	0	10	10	0	-15	-5
03112300	14	8.2 N	147.8 E	80	18	75	139	187	171	152	169	139	0	0	5	10	10	-5	-	-5
03112306	15	7.9 N	146.6 E	85	0	13	79	89	64	74	55	58	5	5	15	15	10	-	-5	-5
03112312	16	7.8 N	145.5 E	90	0	19	54	51	54	60	35	42	5	10	15	15	10	-	-	-10
03112318	17	7.8 N	144.5 E	95	18	77	55	30	36	50	75	93	0	15	10	5	10	-	-	-15

| 03112818 | 37 | 17.7 N | 131.3 E | 125 | 0 | 26 | 18 | 48 | 81 | 101 | | | 0 | 5 | - | - | - | - | - |
| :--- |

Figure 1-26W-1. $260135 Z$ November 2003 MODIS true color image of 26W (Lupit), north of Yap, with an intensity of 130 knots.

Figure 1-26W-2. $260702 Z$ November 2003 GOES-9 visible satellite image of TY 26W (Lupit), located 625 nm east of the Philippines, with a peak intensity of 145 knots.

Figure 1-26W-3. $261202 Z$ November 2003 multi-sensor satellite images of TY 26W (Lupit), located 625 nm east of the Philippines, with a peak intensity of 145 knots.

SUPER TYPHOON 26W (LUPIT)
 20 NOVEMBER - 01 DECEMBER 2003

Time Intensity for 26W

Intensity (kts)

Fix Date (Zulu)

Tropical Storm (TS) 27W

First Poor : N/A

First Fair : 0600Z 21 Sep 03

First TCFA : 0230Z 24 Dec 03

First Warning : 0600Z 24 Dec 03
Last Warning : 1800Z 27 Dec 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : Surigao, Philippines
Total Warnings : 15
Remarks:

1) Tropical Storm (TS) 27 W developed in the monsoon trough on 21 December, 2003, approximately 150 NM west-southwest of Chuuk and tracked generally westward over the next 6 days as a weak system that intensified to only 35 knots.

The cyclone made landfall near Surigao, Philippines at approximately $1500 Z$ on 27 December and subsequently dissipated in the Bohol Sea.
2) No damage or significant operational impacts were reported for this cyclone.

Statistics for JTWC on TS27W																				
	WRN	BES	RACK			SIT	TION	ERR	ORS					ND	RR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120

03122300		11.1 N	142.0E	20																
03122306		11.6N	140.6E	20																
03122312		12.1 N	139.3E	20																
03122318		12.6N	138.1E	20																
03122400		13.1 N	137.0E	20																
03122406	1	13.3N	135.8E	25	13	42	102	173	241	449			0	0	5	10	20	10		
03122412	2	13.5N	134.6E	30	26	75	146	197	262	372			-5	0	0	5	10	0		
03122418	3	13.7N	133.4E	30	8	44	68	83	104	179			0	5	5	10	10	0		
03122500	4	13.7N	132.2E	30	31	64	76	112	152				0	0	5	5	0			
03122506	5	13.7 N	131.0E	30	11	31	47	93	142				0	0	5	0	-5			
03122512	6	13.8 N	130.0E	35	13	12	77	147	197				0	5	10	10	5			
03122518	7	13.8N	129.3E	35	18	27	70	133	180				0	5	10	0	5			
03122600	8	13.7 N	128.6E	35	5	42	95	150					0	5	0	0				
03122606	9	13.4 N	128.0E	35	21	59	105	145					0	0	-5	5				
03122612	10	13.0N	127.4E	35	41	83	133						-5	-10	-5					
03122618	11	12.3N	127.1E	35	48	98	84						0	-5	0					
03122700	12	11.5N	126.9E	35	13	42							0	5						
03122706	13	10.6 N	126.8E	35	16	18							0	5						
03122712	14	9.8 N	126.4E	30	53								0							
03122718	15	9.4N	125.5E	25	11								0							
			AVERAGE		22	49	91	137	183	333			1	3	5	5	8	3		
			BIAS										-1	1	3	5	6	3		
			\# CASES		15	13	11	9	7	3			15	13	11	9	7	3		

Figure 1-27W-1. $262213 Z$ December 2003 multi-sensor satellite images of TY 27W, revealing a partially exposed low level circulation center 120 nm east of the Philippines, with a peak intensity of 35 knots.

TROPICAL STORM 27W

24-27 DECEMBER 2003

Time Intensity for 27W

Intensity (kts)

Tropical Storm (TS) 27W

First Poor: N/A
First Fair : 0600Z 21 Sep 03
First TCFA : 0230Z 24 Dec 03
First Warning : 0600Z 24 Dec 03
Last Warning : 1800Z 27 Dec 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : Surigao, Philippines
Total Warnings : 15
Remarks:

1) Tropical Storm (TS) 27W developed in the monsoon trough on 21 December, 2003, approximately 150 NM west-southwest of Chuuk and tracked generally westward over the next 6 days as a weak system that intensified to only 35 knots.

The cyclone made landfall near Surigao, Philippines at approximately $1500 Z$ on 27 December and subsequently dissipated in the Bohol Sea.
2) No damage or significant operational impacts were reported for this cyclone.

Statistics for JTWC on TS27W																				
	WRN	BEST T	TRACK			SIT	TION	ERR	ORS					ND E	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03122300		11.1 N	142.0E	20																
03122306		11.6N	140.6E	20																
03122312		12.1 N	139.3E	20																
03122318		12.6N	138.1E	20																
03122400		13.1 N	137.0E	20																
03122406	1	13.3 N	135.8E	25	13	42	102	173	241	449			0	0	5	10	20	10		
03122412	2	13.5N	134.6E	30	26	75	146	197	262	372			-5	0	0	5	10	0		
03122418	3	13.7N	133.4E	30	8	44	68	83	104	179			0	5	5	10	10	0		
03122500	4	13.7N	132.2E	30	31	64	76	112	152				0	0	5	5	0			
03122506	5	13.7 N	131.0E	30	11	31	47	93	142				0	0	5	0	-5			
03122512	6	13.8 N	130.0E	35	13	12	77	147	197				0	5	10	10	5			
03122518	7	13.8 N	129.3E	35	18	27	70	133	180				0	5	10	0	5			
03122600	8	13.7 N	128.6E	35	5	42	95	150					0	5	0	0				
03122606	9	13.4 N	128.0E	35	21	59	105	145					0	0	-5	5				
03122612	10	13.0 N	127.4E	35	41	83	133						-5	-10	-5					
03122618	11	12.3 N	127.1E	35	48	98	84						0	-5	0					
03122700	12	11.5 N	126.9E	35	13	42							0	5						
03122706	13	10.6 N	126.8E	35	16	18							0	5						
03122712	14	9.8 N	126.4E	30	53								0							
03122718	15	9.4 N	125.5E	25	11								0							
			AVERAGE		22	49	91	137	183	333			1	3	5	5	8	3		
			BIAS										-1	1	3	5	6	3		
			\# CASES		15	13	11	9	7	3			15	13	11	9	7	3		

Figure 1-27W-1. $262213 Z$ December 2003 multi-sensor satellite images of TY 27W, revealing a partially exposed low level circulation center 120 nm east of the Philippines, with a peak intensity of 35 knots.

TROPICAL STORM 27W

24-27 DECEMBER 2003

Time Intensity for 27W
Intensity (kts)

Tropical Cyclone (TC) 01B

First Poor : 0300Z 08 May 03
First Fair : 1300Z 08 May 03

First TCFA : 1730Z 08 May 03

First Warning: 1200Z 10 May 03
Last Warning : 1800Z 19 May 03
Max Intensity : 60 kts, gusts to 75 kts
Landfall : Ramree Island, Myanmar
Total Warnings : 15
Remarks:

1) Tropical Cyclone (TC) 01B, the first significant North Indian Ocean tropical cyclone of 2003, developed out of a broad surface trough approximately 260 NM west of the north tip of Sumatra. The area initially tracked northwestward in a moderately favorable environment of diffluence aloft and low vertical wind shear. The first warning was issued on 10 May at $1200 Z$.

For approximately 36 hours after the initial warning, the cyclone continued on a northwestward course, with a track speed between 6 and 12 knots. Around 1800 Z on 11 May, the cyclone slowed and started moving more northward as a mid-level ridge northeast of the system began building.

By $1800 Z$ on 13 May, satellite imagery revealed a fully exposed low level circulation center to the east of the deep convection. By 0000 Z on 16 May, the system entered into a weak steering environment as the mid level steering ridge east of the system began to weaken. The system then shifted to a more northeastward track by 0000 Z on 18 May under the influence of a mid-level ridge east of the system and the low to mid-level buffer southeast of the system. TC 01B made landfall with an intensity of 40 knots over Ramree Island, Myanmar, and then quickly dissipated over land.
2) No reports were received of any damage from this cyclone.

Statistics for JTWC on TC01B

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03050812		5.0 N	91.3E	15																
03050818		4.8 N	91.2E	20																
03050900		4.5 N	91.1E	20																
03050906		4.2 N	91.0E	25																
03050912		4.4 N	90.7E	25																
03050918		5.1 N	90.4E	25																
03051000		6.0 N	90.2E	25																
03051006		6.9 N	89.9E	25																
03051012	1	7.8 N	89.5E	30	8	34	44	45	136				0	-10	-15	-5	10			
03051100	2	9.6 N	88.0E	45	30	40	87	158	185				5	0	10	25	35			
03051112	3	10.6 N	86.8E	60	5	70	119	148	170				0	5	20	25	40			
03051200	4	10.4 N	86.4E	60	38	100	138	156	193				0	5	10	20	30			
03051206	5	10.9 N	86.4E	55	18	71	69	87	115				0	0	10	20	30			
03051218	6	11.8 N	86.8E	55	0	38	55	63	118				10	25	35	50	70			
03051306	7	12.6 N	86.1E	55	6	37	70	128	135				10	15	30	50	50			
03051318	8	13.2 N	85.9E	55	5	8	56	126	170				0	5	10	10	5			
03051406	9	14.2 N	86.0E	45	11	50	92	131	178				5	10	10	5	-5			
03051418	10	14.7 N	86.7E	35	8	64	85	133	183				0	10	10	10	15			
03051506	11	14.4 N	86.2E	35	49	78	123	180	268				0	0	-5	0	0			
03051518	12	14.4 N	86.8E	35	24	49	99	150	167				0	-5	5	0	10			
03051606	13	14.2 N	87.1E	45	39	79	131	146	135				0	5	5	15	15			
03051618	14	13.7 N	86.8E	40	48	134	184	180	179				0	0	5	5	5			
03051706	15	13.1 N	88.3E	40	93	175	244	308	311				0	10	10	5	-10			
03051718	16	13.7N	90.2E	30	44	80	131						5	0	-5					
03051818	17	16.7N	93.0E	30	13	50	66						5	5	-10					
03051906	18	18.3N	93.3E	45	22	19							0	-5						
03051918	19	19.9N	94.1E	40	6								0							
			AVERAGE		25	65	105	143	176				2	6	12	16	22			
			BIAS										2	4	8	16	20			
			\# CASES		19	18	17	15	15				19	18	17	15	15			

Figure 1-01B-1. 140131 Z May 2003 MET-5 visible image of TC 01B, revealing an partially exposed low level circulation, located 360 nm west of the Andaman islands, with an estimated intensity of 50 knots.

Figure 1-01B-2. $140515 Z$ May 2003 MODIS true-color image of Tropical Cyclone (03B) east of India with an estimated intensity of 45 knots.

TROPICAL CYCLONE 01B

10-19 MAY 2003

TROPICAL CYCLONE 01B
10-19 MAY 2003

Time Intensity for 01B

Intensity (kts)

Tropical Cyclone (TC) 01B

First Poor : 0300Z 08 May 03
First Fair : 1300Z 08 May 03
First TCFA : $1730 Z 08$ May 03
First Warning : 1200Z 10 May 03
Last Warning : 1800Z 19 May 03
Max Intensity : 60 kts, gusts to 75 kts
Landfall : Ramree Island, Myanmar
Total Warnings : 15
Remarks:

1) Tropical Cyclone (TC) 01B, the first significant North Indian Ocean tropical cyclone of 2003, developed out of a broad surface trough approximately 260 NM west of the north tip of Sumatra. The area initially tracked northwestward in a moderately favorable environment of diffluence aloft and low vertical wind shear. The first warning was issued on 10 May at $1200 Z$.

For approximately 36 hours after the initial warning, the cyclone continued on a northwestward course, with a track speed between 6 and 12 knots. Around $1800 Z$ on 11 May, the cyclone slowed and started moving more northward as a mid-level ridge northeast of the system began building.

By 1800 Z on 13 May, satellite imagery revealed a fully exposed low level circulation center to the east of the deep convection. By 0000Z on 16 May, the system entered into a weak steering environment as the mid level steering ridge east of the system began to weaken. The system then shifted to a more northeastward track by 0000 Z on 18 May under the influence of a mid-level ridge east of the system and the low to mid-level buffer southeast of the system. TC 01B made landfall with an intensity of 40 knots over Ramree Island, Myanma, and then quickly dissipated over land.
2) No reports were received of any damage from this cyclone.

Statistics for JTWC on TC01B

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03050812		5.0 N	91.3E	15																
03050818		4.8 N	91.2E	20																
03050900		4.5 N	91.1E	20																
03050906		4.2 N	91.0E	25																
03050912		4.4 N	90.7E	25																
03050918		5.1 N	90.4E	25																
03051000		6.0 N	90.2E	25																
03051006		6.9 N	89.9E	25																
03051012	1	7.8 N	89.5E	30	8	34	44	45	136				0	-10	-15	-5	10			
03051100	2	9.6 N	88.0E	45	30	40	87	158	185				5	0	10	25	35			
03051112	3	10.6 N	86.8E	60	5	70	119	148	170				0	5	20	25	40			
03051200	4	10.4N	86.4E	60	38	100	138	156	193				0	5	10	20	30			
03051206	5	10.9 N	86.4E	55	18	71	69	87	115				0	0	10	20	30			
03051218	6	11.8 N	86.8E	55	0	38	55	63	118				10	25	35	50	70			
03051306	7	12.6 N	86.1E	55	6	37	70	128	135				10	15	30	50	50			
03051318	8	13.2 N	85.9E	55	5	8	56	126	170				0	5	10	10	5			
03051406	9	14.2 N	86.0E	45	11	50	92	131	178				5	10	10	5	-5			
03051418	10	14.7N	86.7E	35	8	64	85	133	183				0	10	10	10	15			
03051506	11	14.4 N	86.2E	35	49	78	123	180	268				0	0	-5	0	0			
03051518	12	14.4N	86.8E	35	24	49	99	150	167				0	-5	5	0	10			
03051606	13	14.2 N	87.1E	45	39	79	131	146	135				0	5	5	15	15			
03051618	14	13.7N	86.8E	40	48	134	184	180	179				0	0	5	5	5			
03051706	15	13.1 N	88.3E	40	93	175	244	308	311				0	10	10	5	-10			
03051718	16	13.7N	90.2E	30	44	80	131						5	0	-5					
03051818	17	16.7N	93.0E	30	13	50	66						5	5	-10					
03051906	18	18.3N	93.3E	45	22	19							0	-5						
03051918	19	19.9N	94.1E	40	6								0							
			AVERAGE		25	65	105	143	176				2	6	12	16	22			
			BIAS										2	4	8	16	20			
			\# CASES		19	18	17	15	15				19	18	17	15	15			

Figure 1-01B-1. $140131 Z$ May 2003 MET-5 visible image of TC 01B, revealing an partially exposed low level circulation, located 360 nm west of the Andaman islands, with an estimated intensity of 50 knots.

Figure 1-01B-2. $140515 Z$ May 2003 MODIS true-color image of Tropical Cyclone (03B) east of India with an estimated intensity of 45 knots.

TROPICAL CYCLONE 01B
10 - 19 MAY 2003

TROPICAL CYCLONE 01B

Time Intensity for 01B

Tropical Cyclone (TC) 02A

First Poor : 0900Z 11 Nov 03
First Fair : 1800Z 11 Nov 03
First TCFA : 0500Z 12 Nov 03
First Warning : 1200Z 12 Nov 03
Last Warning : $0600 Z 15$ Nov 03
Max Intensity : 80 kts, gusts to 100 kts
Landfall : N/A
Total Warnings : 11
Remarks:
(1) TC 02A was first noted as an area of developing convection, approximately 600 nm west of Cochin, India, in the Arabian Sea. The system quickly became more organized and the first warning was issued on 12 November. TC 02A continued to intensify, reaching a maximum intensity of 80 knots. TC 02A tracked along the southern periphery of a low to mid tropospheric subtropical ridge located north and west of the cyclone throughout the cyclone life span. By 0600 Z on the 15th, microwave imagery revealed that deep convection became decoupled from the low level circulation and a final warning was issued.

Subsequent to the final warning, the low level circulation center was tracked by satellite for a further 72 hours, at which time the cyclone dissipated completely over water.
(2) No damage reports were received associated with this system.

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03111012		8.7 N	67.1E	15																
03111018		8.5N	66.4E	15																
03111100		8.3 N	65.7E	15																
03111106		8.0 N	65.1E	15																
03111112		7.6 N	64.2E	15																
03111118		7.1 N	63.0E	15																
03111200		6.5 N	61.6E	20																
03111206		6.2 N	60.6E	25																
03111212	1	6.1 N	60.0E	30	11	43	80	86	70				0	-20	-25	-30	-15			
03111300	2	6.2 N	58.8E	55	18	38	36	46	103				0	0	0	20	55			
03111306	3	6.2 N	58.2E	60	5	0	25	54	119	230			0	0	0	45	60	45		
03111312	4	6.1 N	57.6E	65	5	8	32	90	173	280			0	0	15	45	50	35		
03111318	5	6.1 N	57.0E	70	11	35	34	104	171	367			5	0	35	55	45	-10		
03111400	6	5.9N	56.2E	75	5	40	108	198	289	414			10	40	50	45	35	-10		
03111406	7	5.7 N	55.7E	80	13	48	131	203	276	435			5	35	45	35	25	-5		
03111412	8	5.8 N	55.2E	65	43	129	228	322	405				0	15	15	5	-10			
03111418	9	5.9 N	54.8E	50	5	101	191	258	376				0	10	0	-5	-10			
03111500	10	6.0 N	54.6E	40	65	173	270	371					0	0	-5	-10				
03111506	11	6.0 N	54.4E	30	30	102	208	326					0	-5	-10	-15				
03111512		6.0 N	54.1E	30																
03111518		6.0 N	53.8E	30																
03111600		5.9 N	53.5E	30																
03111606		5.8 N	53.2E	30																
03111612		5.6 N	52.8E	30																
03111618		5.0 N	52.3E	30																
03111700		4.4 N	51.7E	30																
03111706		3.7 N	51.5E	30																
03111712		3.2 N	51.5E	30																
03111718		2.7 N	51.6E	30																
03111800		2.5 N	51.8E	25																
03111806		2.4 N	52.0E	25																
			AVERAGE		20	65	122	187	220	345			2	11	18	28	34	21		
			BIAS										2	7	11	17	26	11		

Figure 1-02A-1. 140430Z November 2003 multi-sensor satellite images of TC 02A, located 650 nm northeast of the Mogadishu, with an peak intensity of 85 knots.

TROPICAL CYCLONE 02A
 12-15 NOVEMBER 2003

Time Intensity for 02A

Intensity (kts)

Tropical Cyclone (TC) 02A

First Poor : 0900Z 11 Nov 03
First Fair : 1800Z 11 Nov 03
First TCFA : 0500Z 12 Nov 03

First Warning : 1200Z 12 Nov 03
Last Warning : 0600Z 15 Nov 03
Max Intensity : 80 kts, gusts to 100 kts
Landfall : N/A

Total Warnings : 11
Remarks:
(1) TC 02A was first noted as an area of developing convection on 11 November, approximately 600 nm west of Cochin, India, in the Arabian Sea. The system quickly became more organized and the first warning was issued one day later by JTWC. TC 02A continued to intensify and reached a maximum intensity of 80 knots. TC 02A tracked along the southern periphery of a low to mid tropospheric subtropical ridge located north and west of the cyclone throughout the cyclone life span. By 0600Z on the 15th, microwave imagery revealed that deep convection became decoupled from the low level circulation and a final warning was issued.

Subsequent to the final warning, the low level circulation center was tracked by satellite for a further 72 hours, at which time the cyclone dissipated completely over water.
(2) No damage reports were received associated with this system.

Statistics for JTWC on TC02A

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03111012		8.7 N	67.1E	15																
03111018		8.5 N	66.4E	15																
03111100		8.3 N	65.7E	15																
03111106		8.0 N	65.1E	15																
03111112		7.6 N	64.2E	15																
03111118		7.1 N	63.0E	15																
03111200		6.5 N	61.6E	20																
03111206		6.2 N	60.6E	25																
03111212	1	6.1 N	60.0E	30	11	43	80	86	70				0	-20	-25	-30	-15			
03111300	2	6.2 N	58.8E	55	18	38	36	46	103				0	0	0	20	55			
03111306	3	6.2 N	58.2E	60	5	0	25	54	119	230			0	0	0	45	60	45		
03111312	4	6.1 N	57.6E	65	5	8	32	90	173	280			0	0	15	45	50	35		
03111318	5	6.1 N	57.0E	70	11	35	34	104	171	367			5	0	35	55	45	-10		
03111400	6	5.9 N	56.2E	75	5	40	108	198	289	414			10	40	50	45	35	-10		
03111406	7	5.7N	55.7E	80	13	48	131	203	276	435			5	35	45	35	25	-5		
03111412	8	5.8N	55.2E	65	43	129	228	322	405				0	15	15	5	-10			
03111418	9	5.9 N	54.8E	50	5	101	191	258	376				0	10	0	-5	-10			
03111500	10	6.0 N	54.6E	40	65	173	270	371					0	0	-5	-10				
03111506	11	6.0 N	54.4E	30	30	102	208	326					0	-5	-10	-15				
03111512		6.0 N	54.1E	30																
03111518		6.0 N	53.8E	30																
03111600		5.9N	53.5E	30																
03111606		5.8 N	53.2E	30																
03111612		5.6 N	52.8E	30																
03111618		5.0 N	52.3E	30																
03111700		4.4 N	51.7E	30																
03111706		3.7 N	51.5E	30																
03111712		3.2 N	51.5E	30																
03111718		2.7 N	51.6E	30																
03111800		2.5 N	51.8E	25																
03111806		2.4 N	52.0E	25																
			AVERAGE		20	65	122	187	220	345			2	11	18	28	34	21		
			BIAS										2	7	11	17	26	11		
			\# CASES		11	11	11	11	9	5			11	11	11	11	9	5		

Figure 1-02A-1. 140430Z November 2003 multi-sensor satellite images of TC 02A, located 650 nm northeast of the Mogadishu, with an peak intensity of 85 knots.

TROPICAL CYCLONE 02A

Time Intensity for 02A
Intensity (kts)

Fix Date (Zulu)

Tropical Cyclone (TC) 03B

First Poor : 05300Z 10 Dec 03

First Fair : 0600Z 11 Dec 03

First TCFA : $1430 Z 12$ Dec 03
First Warning : 1800Z 12 Dec 03
Last Warning : $1800 Z 15$ Dec 03, Dissipation
Max Intensity : 55 kts , gusts to 70 kts
Landfall : Near False Divi Point, India
Total Warnings : 7
Remarks:
(1) Tropical Cyclone (TC) 03B formed off the northwest coast of Summatra and tracked northwestward along the periphery of the low to mid-level steering ridge while slowly intensifying. The cyclone reached a peak intensity of 55 knots before making landfall near False Divi Point, India on 15 December, 2003 at approximately $1430 Z$.
(2) Reports indicate that there were 27 fatalities and more than 5100 homes damaged by heavy flooding and high winds. Uprooted trees and damaged electrical tranformers created extensive power outages in India.

	Statistics for JTWC on TC03B																	
	WRN	BEST	TRACK			SITION	ERR	ROR					ND	ERRO	ORS			
DTG	NO.	LAT	LONG	wind	00	1224	36	48	72	96	120		12	24	3648	72	96	120

03121106		4.5 N	91.7 E	25																

Naval Research Laboratory http://www.nrlmry navy mil/sat_products.html

```
190 200 210
240
250
260
270
```

Figure 1-03B-1. $150103 Z$ December 2003 SSM/I imagery of TC 03B, the banding eye was located 115 nm east of the Madras, with an intensity of 50 knots.

Figure 1-03B-2. $150520 Z$ December 2003 MODIS true-color image of TC 03B, located off the east coast of India, with an intensity of 55 knots.

TROPICAL CYCLONE 03B

12-15 DECEMBER 2003

Time Intensity for 03B

Intensity (kts)

Fix Date (Zulu)

Tropical Cyclone (TC) 03B

First Poor : 05300Z 10 Dec 03
First Fair : 0600Z 11 Dec 03
First TCFA : $1430 Z 12$ Dec 03

First Warning : 1800Z 12 Dec 03
Last Warning : 1800Z 15 Dec 03, Dissipation
Max Intensity : 55 kts, gusts to 70 kts
Landfall : Near False Divi Point, India
Total Warnings : 7
Remarks:
(1) Tropical Cyclone (TC) 03B formed off the northwest coast of Summatra and tracked northwestward along the periphery of the low to mid-level steering ridge while slowly intensifying. The cyclone reached a peak intensity of 55 knots before making landfall near False Divi Point, India on 15 December, 2003 at approximately $1430 Z$.
(2) Reports indicate that there were 27 fatalities and more than 5100 homes damaged by heavy flooding and high winds. Uprooted trees and damaged electrical tranformers created extensive power outages in India.

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03121106		4.5 N	91.7E	25																
03121112		5.0 N	90.7E	25																
03121118		5.6 N	89.8E	25																
03121200		6.4 N	89.0E	25																
03121206		7.3 N	88.9E	25																
03121212		7.7 N	88.7E	25																
03121218	1	7.9 N	88.4E	30	24	47	55	96	151	293			0	5	5	0	5	-15		
03121306	2	8.4 N	87.5E	30	8	42	109	182	276	458			0	0	-5	0	-10	0		
03121318	3	9.3 N	86.1E	35	21	78	139	223	311				0	-5	0	-5	10			
03121406	4	10.8 N	84.7E	45	11	36	99	150	212				0	5	0	5	10			
03121418	5	12.4 N	83.2E	45	29	91	134	189					0	-10	5	25				
03121506	6	14.6N	81.6E	55	13	37	80						0	5	10					
03121518	7	16.6 N	81.1E	45	12	12							5	0						
03121600		17.7N	81.3E	35																
03121606		18.4N	81.6E	30																
			AVERAGE		17	49	103	168	238	375			1	4	4	7	9	8		
			BIAS										1	0	3	5	4	-8		
			\# CASES		7	7	6	5	4	2			7	7	6	5	4	2		

Figure 1-03B-1. $150103 Z$ December 2003 SSM/I imagery of TC 03B, the banding eye was located 115 nm east of the Madras, with an intensity of 50 knots.

Figure 1-03B-2. $150520 Z$ December 2003 MODIS true-color image of TC 03B, located off the east coast of India, with an intensity of 55 knots.

TROPICAL CYCLONE 03B

12-15 DECEMBER 2003

Time Intensity for 03B
Intensity (kts)

$=$
- KGWC
- PGTW
- KWBC
CIRA
- T-Numbers
- Best Track

2. SOUTH PACIFIC AND SOUTH INDIAN OCEAN TROPICAL CYCLONES

2.1 GENERAL

In accordance with CINCPACINST 3140.1 (series), Southern Hemisphere tropical cyclones are numbered sequentially from 01 July through 30 June to reflect the Southern Hemisphere tropical season.

For warning message delineation, the Southern Hemisphere Area of Responsibility (AOR) is divided into two basins: the South Indian (west of 135° East longitude) and the South Pacific Ocean (east of 135° East longitude). The suffixes "S" (South Indian Ocean) and "P" (South Pacific Ocean) are appended to the tropical cyclone number to differentiate warnings for these basins. For this report, the Southern Hemisphere AOR is broken down into three sub-basins, reflecting primary cyclogenesis areas: South Indian (west of 105° East longitude), Australia (105° East longitude to 165° East longitude), and South Pacific (east of 165° East longitude).

2.2 SUMMARY

Table 2-1 lists the significant tropical cyclones during the 2003 season and can be compared to the climatological mean presented in Table 2-2. Table 2-3 compares this year's tropical cyclone activity in the Southern Hemisphere sub-basins to previous years and climatology. Composites of the tropical cyclone best tracks for the Southern Hemisphere appear following Table 2-3.

Table 2-1

SOUTHERN HEMISPHERE TROPICAL CYCLONES FOR 2003

(01 JULY 2002-30 JUNE 2003)

TC	NAME	PERIOD	NUMBER ISSUED	EST MAX SFC WINDS KTS (M/SEC)	$\begin{aligned} & \text { MSLP } \\ & (\mathrm{MB})^{* *} \end{aligned}$
01S	Abaimba	06 Sep - 08 Sep	4	35(18)	997
02S	Atang	06 Nov-13 Nov	12	45(23)	991
035	Boura	15 Nov-22 Nov	22	75(39)	967
04P	Yolande	04 Dec - 05 Dec	2	35(18)	997
05S	Crystal	23 Dec - 29 Dec	12	90(46)	954
06P	Zoe	25 Dec - 01 Jan	14	155(80)	879
07S	-	26 Dec - 28 Dec	5	30(15)	1000
08S	Delfina	30 Dec - 01 Jan	4	55(28)	984
09S	Ebula	08 Jan - 12 Jan	9	65(33)	976
10P	Ami	11 Jan - 15 Jan	9	110(57)	933
11S	Fari	23 Jan - 31 Jan	9	55(28)	984
12P	Beni	25 Jan - 31 Jan	14	125(64)	916
13P	Cilla	27-Jan	2	35(18)	997
14S	Fiona	05 Feb-13 Feb	19	110(57)	933
15P	Dovi	05 Feb - 10 Feb	11	130(67)	910
16 S	Gerry	08 Feb-15 Feb	15	105(54)	938
17 S	Hape	10 Feb - 14 Feb	10	80(41)	963
18 S	Isha	11 Feb-14 Feb	7	45(23)	991
19 S	Japhet	26 Feb-03 Mar	12	115(59)	927
20S	Graham	27 Feb-01 Mar	4	40(21)	994
21 S	Harriet	02 Mar - 09 Mar	21	35(18)	997
22P	Erica	04 Mar - 15 Mar	18	130(67)	910
23 S	Kalunde	05 Mar - 15 Mar	23	140(72)	898
24S	Craig	08 Mar - 12 Mar	9	35(18)	997
25P	Eseta	10 Mar - 14 Mar	8	110(57)	933
26 S	Inigo	01 Apr - 08 Apr	23	140(72)	898
27P	Fili	14-Apr	1	45(23)	991
28 S	Manou	03 May - 10 May	16	75(39)	967

29P	Gina	04 Jun - 08 Jun	10	$90(46)$	954
		Total	325		
**MSLP Converted from estimated maximum surface winds using Atkinson/Holiday wind pressure relationship. Number of warnings issued includes Amended warnings.					

1989	0	0	0	0	2	1	5	8	6	4	2	0	28	
1990	2	0	1	1	2	2	4	4	10	2	1	0	29	
1991	0	0	1	1	1	3	2	5	5	2	1	1	22	
1992	0	0	1	1	2	5	4	11	3	2	1	0	30	
1993	0	0	1	1	0	5	7	7	2	2	2	0	27	
1994	0	0	0	0	2	4	8	4	9	3	0	0	30	
1995	0	0	0	0	2	2	5	4	5	4	0	0	22	
1996	0	0	0	0	1	3	7	6	6	4	1	0	28	
The criteria used in TABLE														

1) If a tropical cyclone was first warned on during the last two days of a particular month and continued into the next month for longer than two days, then that system was attributed to the second month.
2) If a tropical cyclone was warned on prior to the last two days of a month, it was attributed to the first month, regardless of how long the system lasted.
3) If a tropical cyclone began on the last day of the month and ended on the first day of the next month, that system was attributed to the first month. However, if a tropical cyclone began on the last day of the month and continued into the next month for only two days, then it was attributed to the second month.

Table 2-3 ANNUAL VARIATION OF SOUTHERN HEMISPHERE TROPICAL CYCLONES BY OCEAN BASIN				
YEAR	SOUTH INDIAN	AUSTRALIAN	SOUTH PACIFIC	
	$\begin{aligned} & \text { (WEST OF } \\ & \left.105^{\circ} \mathrm{E}\right) \end{aligned}$	$\left(105^{\circ} \mathrm{E}-165^{\circ} \mathrm{E}\right)$	$\begin{aligned} & \text { (EAST OF } \\ & \left.165^{\circ} \mathrm{E}\right) \end{aligned}$	TOTAL
$\begin{aligned} & 1958-1977 \\ & \text { AVERAGE* } \end{aligned}$	8.4	10.3	5.9	24.6
1981	13	8	3	24
1982	12	11	2	25
1983	7	6	12	25
1984	14	14	2	30
1985	14	15	6	35
1986	14	16	3	33

2. SOUTH PACIFIC AND SOUTH INDIAN OCEAN TROPICAL CYCLONES

1987	9	8	11	28
1988	14	2	5	21
1989	12	9	7	28
1990	18	8	3	29
1991	11	10	1	22
1992	11	6	13	30
1993	10	16	1	27
1994	16	10	4	30
1995	11	7	4	22
1996	13	11	4	28
1997	17	5	16	38
1998	12	10	15	37
1999	13	16	4	33
2000	10	12	5	27
2001	10	8	3	21
2002	14	7	4	25
2003	14	6	9	29
(1981-2003)				
TOTAL	289	221	137	647
AVERAGE	12.6	9.6	6.0	28.1
* (Gray, 1978)				

SOUTHEAST INDIAN OCEAN TROPICAL CYCLONES 06 NOV 2002－12 JAN 2003

MAXIMUM SUSTAINED SURFACE WIND

 －64KT（33M／SEC）OR GREATER ーーーー 34 TO 63KT（ 18 TO 32M／SEC） ．．．．．．．．．．．．33KT（17M／SEC）OR LESS| TC 01S | $06 \mathrm{SEP}-08 \mathrm{SEP}$ |
| :--- | :---: |
| TC 02S（ATANG） | $06 \mathrm{NOV}-13 \mathrm{NOV}$ |
| TC 03S（BOURA） | $15 \mathrm{NOV}-22 \mathrm{NOV}$ |
| TC 05S（CRYSTAL） | $23 \mathrm{DEC}-29 \mathrm{DEC}$ |
| TC 08S（DELFINA） | $30 \mathrm{DEC}-01 \mathrm{JAN}$ |
| TC 09S（EBULA） | $08 \mathrm{JAN}-12 \mathrm{JAN}$ |

SOUTHWEST INDIAN OCEAN
TROPICAL CYCLONES
23 JAN 2003 - 10 MAY 2003

MAXTMUM SUSTAINED SURFACE WIND

- 64KT (33M/SEC) OR GREATER - - - - 34 TO 63 KT (18 TO 32M/SEC) $\ldots \ldots . . .$. 33KT (17M/SEC) OR LESS

TC 11S (FARI)	23 JAN - 31 JAN
TC 16S (GERRY)	$08 \mathrm{FEB}-14 \mathrm{FEB}$
TC 17S (HAPE)	$10 \mathrm{FEB}-14 \mathrm{FEB}$
TC 19S (JAPHET)	$14 \mathrm{FEB}-03 \mathrm{MAR}$
TC 23S (KALUNDE) $05 \mathrm{MAR}-15 \mathrm{MAR}$	
TC 28S (MANOU)	$03 \mathrm{MAY}-10 \mathrm{MAY}$

SOUTHEAST INDIAN OCEAN TROPICAL CYCLONES 26 DEC 2002-09 MAR 2003

MAXIMUM SUSTAINED SURFACE WIND	
	64KT (33M/SEC) OR GREATER
----	34 T0 $63 \mathrm{KT}(18$ TO 32M/SEC)
$\cdots \cdots \cdots \cdots$.	$33 \mathrm{KT}(17 M / S E C)$ OR LESS

TC 07S
26 DEC - 28 DEC TC 14S (FIONA) 05 FEB - 13 FEB TC 18S (ISHA) 11 FEB - 14 FEB TC 21S (HARRIET) 02 MAR - 09 MAR

> | AUSTRALIA REGION |
| :---: |
| TROPCIAL CYCLONES |
| 27 FEB - 08 APR 2003 |

MAXTMUM SUSTAINED SURFACE WIND
－64KT（33M／SEC）OR GREATER
－ーーー 34 TO 63KT（ 18 TO 32M／SEC）
．．．．．．．．．．．33KT（17M／SEC）OR LESS

AUSTRALIA REGION TROPICAL CYCLONES 25 JAN 2003－08 JUN 2003

MAXTMUM SUSTAINED SURFACE WIND －64KT（33M／SEC）OR GREATER ーーーー 34 TO 63KT（ 18 TO 32M／SEC） $\ldots \ldots$. 33KT（17M／SEC）OR LESS

SOUTHERN PACIFIC OCEAN TROPICAL CYCLONES 04 DEC 2002－08 JUN 2003

MAXTMUM SUSTAINED SURFACE WIND －64KT（33M／SEC）OR GREATER
ーーーー 34 TO 63KT（18 TO 32M／SEC）
…．．．．．．．．33KT（17M／SEC）OR LESS

TC 04P（YOLANDE） $04 \mathrm{DEC}-05 \mathrm{DEC}$	
TC 06P（ZOE）	$25 \mathrm{DEC}-01 \mathrm{JAN}$
TC 10P（AMI）	$11 \mathrm{JAN}-15 \mathrm{JAN}$
TC 13P（CILLA）	27 JAN
TC 15P（DOVI）	$05 \mathrm{FEB}-10 \mathrm{FEB}$
TC 25P（ESETA）	$10 \mathrm{MAR}-14 \mathrm{MAR}$
TC 27P（FILI）	14 APR
TC 29P（GINA）	$04 \mathrm{JUN}-08 \mathrm{JUN}$

TC 04P（YOLANDE） 04 DEC－ 05 DEC TC 06P（ZOE） $25 \mathrm{DEC}-01 \mathrm{JAN}$ TC 10P（AMI） $11 \mathrm{JAN}-15 \mathrm{JAN}$ TC 13P（CILLA） 27 JAN TC 15P（DOVI） $05 \mathrm{FEB}-10 \mathrm{FEB}$ TC 25P（ESETA）$\quad 10 \mathrm{MAR}-14 \mathrm{MAR}$ TC 27P（FILD） 14 APR TC 29P（GINA）04JUN－ 08 JUN

Tropical Cyclone (TC) 01S

First Poor : N/A
First Fair : 1500 Z 05 Sep 02
First TCFA : N/A
First Warning : 1800Z 06 Sep 02
Last Warning : 0600 Z 08 Sep 02, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : None
Total Warnings : 4
Remarks:
(1) Tropical Cyclone (TC) 01S developed in a near-equatorial trough at approximately 5
September, 2002 approximately 650 NM west-northwest of Diego Garcia. The cyclone tracked
westward over the next 3 days as a weak system that intensified to only 35 knots. No operational
impacts and no damage reported.
*Named by WMO designated RSMC

September, 2002, approximately 650 NM west-northwest of Diego Garcia. The cyclone tracked westward over the next 3 days as a weak system that intensified to only 35 knots. No operational impacts and no damage reported.
*Named by WMO designated RSMC

Statistics for JTWC on TC01S

02090512		3.5S	62.9E	20																	
02090518		3.5S	61.9E	20																	
02090600		3.5S	60.9E	20																	
02090606		3.6S	59.9E	20																	
02090612		3.7S	58.9E	25																	
02090618	1	4.0S	58.1E	35	11	6	30	73					0	0		0	0				
02090706	2	4.2 S	56.3E	35	11	18	68						0	0		0					
02090718	3	4.2S	54.9E	30	11	24							0	0							
02090806	4	4.2 S	53.9E	25	8								5								
			AVERAGE		11	16	49	73					1	0		0	0				
			BIAS										1	0		0	0				
			\# CASES		4	3	2	1					4	3		2	1				

Figure 2-01S-1. $061408 Z$ September 2003 multi-sensor satellite images of TC 01S, located 855 nm northwest of Diego Garcia, with an estimated intensity of 35 knots.

TROPICAL CYCLONE 01S
 06-08 SEP 2002

Time Intensity for 01S

Intensity (kts)

Tropical Cyclone (TC) 01S

\square
First Poor : N/A
First Fair : 1500Z 05 Sep 02
First TCFA : N/A

First Warning : 1800Z 06 Sep 02
Last Warning : 0600Z 08 Sep 02, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : None

Total Warnings : 4
Remarks:
(1) Tropical Cyclone (TC) 01S developed in a near-equatorial trough at approximately 5

September, 2002, approximately 650 NM west-northwest of Diego Garcia. The cyclone tracked westward over the next 3 days as a weak system that intensified to only 35 knots. No operational impacts and no damage reported.
*Named by WMO designated RSMC

Statistics for JTWC on TC01S																					
	WRN	BEST	TRACK			SI	TI	ON	ER	ROR					ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	1	2	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02090512		3.5S	62.9E	20																	
02090518		3.5S	61.9E	20																	
02090600		3.5S	60.9E	20																	
02090606		3.6S	59.9E	20																	
02090612		3.7S	58.9E	25																	
02090618	1	4.0S	58.1E	35	11	6		30	73					0	0	0	0				
02090706	2	4.2 S	56.3E	35	11	18	8	68						0	0	0					
02090718	3	4.2 S	54.9E	30	11	2								0	0						
02090806	4	4.2S	53.9E	25	8									5							
			AVERAGE		11	16		49	73					1	0	0	0				
			BIAS											1	0	0	0				
			\# CASES		4	3			1					4	3	2	1				

Figure 2-01S-1. $061408 Z$ September 2003 multi-sensor satellite images of TC 01S, located 855 nm northwest of Diego Garcia, with an estimated intensity of 35 knots.

TROPICAL CYCLONE 01S

06-08 SEP 2002

Time Intensity for 01S
Intensity (kts)

Tropical Cyclone (TC) 02S (Atang)*

First Poor : $1100 Z 03$ Nov 02

First Fair : 1800Z 03 Nov 02
First TCFA : $2100 Z 03$ Nov 02
First Warning : 0600Z 06 Nov 02
Last Warning : 0000Z 13 Nov 02, Dissipated
Max Intensity : 45 kts, gusts to 55 kts
Landfall : Southeastern coast of Tanzania

Total Warnings : 12
Remarks:
(1) Tropical Cyclone (TC) 02 S initially developed approximately 1,150 NM east-northeast of the northern tip of Madagascar. The system reached a maximum intensity of 45 kts on 06 November at 1800Z. A final warning was issued for TC 02S on 07 November and then the TC regenerated back into warning status on 09 November at 0600Z. The cyclone was finaled a second time on 10 November at 1800 Z when the system was located approximately 50 NM northwest of Madagascar. The cyclone regenerated again as it entered into the warmer waters of the Mozambique Channel and was subsequently finaled on 13 November at 00002.
(2) TC 02S made landfall on the southeastern coast of Tanzania, however no reports of damage were available.
*Named by WMO designated RSMC

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02110306		6.6S	69.6E	15																
02110312		6.85	68.4E	15																
02110318		6.95	67.2E	20																
02110400		7.25	66.0E	25																
02110406		7.5S	64.6E	25																
02110412		7.6S	63.3E	25																
02110418		7.65	62.0E	25																
02110500		7.6S	61.2E	25																
02110506		7.8 S	60.6E	25																
02110512		8.15	60.2E	25																
02110518		8.4S	59.9E	25																
02110600		8.8S	59.7E	30																
02110606	1	9.15	59.5E	35	29	62	121	126	133				0	-10	0	5	15			
02110618	2	9.25	58.9E	45	37	102	114	121	72				0	20	20	30	30			
02110706	3	8.5S	58.0E	35	47	109	176	178	136				0	5	15	15	0			
02110718	4	8.45	56.1E	35	0	43							0	5						
02110906	5	10.5S	52.0E	35	29	98	45	65	130				0	0	0	15	5			
02110918	6	11.5S	50.9E	35	34	134	201	208	172				0	-10	5	-5	-10			
02111006	7	11.4S	49.6E	35	42	108	161	152	223				0	10	-5	-10	-5			
02111018	8	11.2S	48.1E	20	47	7113							0	-15						
02111112	9	11.6S	44.8E	35	17	138	129	151					0	-5	-5	-5				
02111200	10	11.5S	42.7E	35	18	108	104						0	0	-5					
02111212	11	10.2S	41.1E	30	21	170							5	5						
02111300	12	10.2S	39.4E	25	11								0							
			AVERAGE		28	85	132	143	144				0	8	7	12	11			
			BIAS										0	0	3	6	6			
			\# CASE		12	1211	8	7	6				12	11	8	7	6			

Figure 2-02S-1. 061200Z November 2002 met-5 visible satellite image of TC 02S (Atang), 705 nm northwest of Diego Garcia, with an estimated intensity of 35 knots.

Figure 2-02S-2. 072256Z November 2002 multi-sensor satellite images of TC 02S (Atang), 975 nm west of Diego Garcia, with an estimated intensity of 45 knots.

TROPICAL CYCLONE 02S (ATANG)
 06-13 NOV 2002

Time Intensity for 02S

Intensity (kts)

Fix Date (Zulu)

Tropical Cyclone (TC) 02S (Atang)*

First Poor: 1100Z 03 Nov 02

First Fair : 1800Z 03 Nov 02
First TCFA : $2100 Z 03$ Nov 02
First Warning : 0600Z 06 Nov 02

Last Warning : 0000Z 13 Nov 02, Dissipated
Max Intensity : 45 kts, gusts to 55 kts
Landfall : Southeastern coast of Tanzania
Total Warnings : 12
Remarks:
(1) Tropical Cyclone (TC) 02 S initially developed approximately $1,150 \mathrm{NM}$ east-northeast of the northern tip of Madagascar. The system reached a maximum intensity of 45 kts on 06 November at 1800Z. A final warning was issued for TC 02 S on 07 November and then the TC regenerated back into warning status on 09 November at 0600Z. The cyclone was finaled a second time on 10 November at 1800 Z when the system was located approximately 50 NM northwest of Madagascar. The cyclone regenerated again as it entered into the warmer waters of the Mozambique Channel and was subsequently finaled on 13 November at 0000Z.
(2) TC 02S made landfall on the southeastern coast of Tanzania, however no reports of damage were available.

[^2]| | WRN | BEST TRACK | | | POSITION ERRORS | | | | | | | | WIND ERRORS | | | | | | | |
| :---: |
| DTG | NO. | LAT | LONG | wind | 00 | 12 | 24 | 36 | 48 | 72 | 96 | 120 | 00 | 12 | 24 | 36 | 48 | 72 | 96 | 120 |
| 02110306 | | 6.65 | 69.6E | 15 | | | | | | | | | | | | | | | | |
| 02110312 | | 6.8S | 68.4E | 15 | | | | | | | | | | | | | | | | |
| 02110318 | | 6.95 | 67.2E | 20 | | | | | | | | | | | | | | | | |
| 02110400 | | 7.25 | 66.0E | 25 | | | | | | | | | | | | | | | | |
| 02110406 | | 7.5S | 64.6E | 25 | | | | | | | | | | | | | | | | |
| 02110412 | | 7.6S | 63.3E | 25 | | | | | | | | | | | | | | | | |
| 02110418 | | 7.6S | 62.0E | 25 | | | | | | | | | | | | | | | | |
| 02110500 | | 7.6S | 61.2E | 25 | | | | | | | | | | | | | | | | |
| 02110506 | | 7.8S | 60.6E | 25 | | | | | | | | | | | | | | | | |
| 02110512 | | 8.1S | 60.2E | 25 | | | | | | | | | | | | | | | | |
| 02110518 | | 8.4S | 59.9E | 25 | | | | | | | | | | | | | | | | |
| 02110600 | | 8.8S | 59.7E | 30 | | | | | | | | | | | | | | | | |
| 02110606 | 1 | 9.1S | 59.5E | 35 | 29 | 62 | 121 | 126 | 133 | | | | 0 | -10 | 0 | 5 | 15 | | | |
| 02110618 | 2 | 9.25 | 58.9E | 45 | 37 | 102 | 114 | 121 | 72 | | | | 0 | 20 | 20 | 30 | 30 | | | |
| 02110706 | 3 | 8.5S | 58.0E | 35 | 47 | 109 | 176 | 178 | 136 | | | | 0 | 5 | 15 | 15 | 0 | | | |
| 02110718 | 4 | 8.4S | 56.1E | 35 | 0 | 43 | | | | | | | 0 | 5 | | | | | | |
| 02110906 | 5 | 10.5S | 52.0E | 35 | 29 | 48 | 45 | 65 | 130 | | | | 0 | 0 | 0 | 15 | 5 | | | |
| 02110918 | 6 | 11.5S | 50.9E | 35 | 34 | 134 | 201 | 208 | 172 | | | | 0 | -10 | 5 | -5 | -10 | | | |
| 02111006 | 7 | 11.4S | 49.6E | 35 | 42 | 108 | 161 | 152 | 223 | | | | 0 | 10 | -5 | -10 | -5 | | | |
| 02111018 | 8 | 11.2S | 48.1E | 20 | 47 | 113 | | | | | | | 0 | -15 | | | | | | |
| 02111112 | 9 | 11.6 S | 44.8E | 35 | 17 | 38 | 129 | 151 | | | | | 0 | -5 | -5 | -5 | | | | |
| 02111200 | 10 | 11.5 S | 42.7E | 35 | 18 | 108 | 104 | | | | | | 0 | 0 | -5 | | | | | |
| 02111212 | 11 | 10.2 S | 41.1E | 30 | 21 | 70 | | | | | | | 5 | 5 | | | | | | |
| 02111300 | 12 | 10.2 S | 39.4E | 25 | 11 | | | | | | | | 0 | | | | | | | |
| | | | AVERAGE | | 28 | 85 | 132 | 143 | 144 | | | | 0 | 8 | 7 | 12 | 11 | | | |
| | | | BIAS | | | | | | | | | | 0 | 0 | 3 | 6 | 6 | | | |
| | | | \# CASE | | 12 | 11 | 8 | 7 | 6 | | | | 12 | 11 | 8 | 7 | 6 | | | |

Figure 2-02S-1. 061200Z November 2002 met-5 visible satellite image of TC 02S (Atang), 705 nm northwest of Diego Garcia, with an estimated intensity of 35 knots.

Figure 2-02S-2. $072256 Z$ November 2002 multi-sensor satellite images of TC 02S (Atang), 975 nm west of Diego Garcia, with an estimated intensity of 45 knots.

TROPICAL CYCLONE 02S (ATANG)
06-13 NOV 2002

Time Intensity for 02S
Intensity (kts)

[^3]Fix Date (Zulu)

Tropical Cyclone (TC) 03 S (Boura)*

First Poor : 1800Z 14 Nov 02
First Fair : 2300Z 14 Nov 02
First TCFA : 0830Z 15 Nov 02
First Warning : $1200 Z 15$ Nov 02
Last Warning : 0000Z 22 Nov 02, Dissipated
Max Intensity : 75 kts, gusts to 90 kts
Landfall : None
Total Warnings : 22
Remarks:
(1) Tropical Cyclone (TC) 03 S was first noted as a tropical disturbance on 14 November 2002, as it developed in conjunction with an equatorial westerly wind-burst. TC 03S became a significant tropical cyclone approximately 205 nm east-southeast of Diego Garcia. TC 03S tracked southwestward towards Mauritius until 20 November at $18 Z$ under the steering influence of a midlevel subtropical ridge to the southeast. Subsequently, a migatory high moving eastward off of Madagascar caused the cyclone to move northwest until it dissipated under strong vertical wind shear. The remnant low level circulation center to tracked north of Madagascar and dissipated.
(2) No damage was reported for this system.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02111418		6.35	77.7E	25																
02111500		7.2S	77.2E	25																
02111506		8.1S	76.7E	30																
02111512	1	8.8S	75.8E	35	13	17	32	94	141	276			0	0	-5	-10	-15	-20		
02111518	2	9.4S	75.0E	40	11	43	99	169	187	281			0	5	5	-10	-20	-15		
02111600	3	9.9S	74.1E	40	25	34	88	132	144	231			0	0	-5	-15	-25	-15		
02111606	4	10.4 S	73.3E	40	5	42	77	89	106	151			0	0	-15	-25	-20	-15		
02111612	5	10.8S	72.5E	45	0	42	51	42	72	153			0	-5	-10	-15	-10	-10		
02111618	6	11.3 S	71.5E	45	39	63	59	69	72	152			0	-15	-20	-15	-10	-15		
02111700	7	11.6 S	70.4E	55	67	77	64	88	71	159			-5	-10	-15	-10	-10	-15		
02111706	8	12.1S	69.5E	65	5	24	26	70	59	112			0	-5	0	0	0	5		
02111712	9	12.7S	68.8E	65	0	36	23	47	49	116			0	-5	0	0	-5	-10		
02111718	10	13.1S	68.2E	75	11	42	59	67	27	103			0	5	5	5	0	10		
02111800	11	13.4S	67.5E	75	12	44	54	31	43	117			0	5	0	-5	-5	15		
02111806	12	13.6 S	66.5E	75	11	13	18	75	96	97			0	0	0	-5	5	20		
02111812	13	13.7S	65.5E	75	6	25	37	48	83	65			0	-5	-5	-10	-10	20		
02111818	14	13.75	64.7E	75	0	12	64	104	139	164			0	-5	-5	0	0	25		
02111900	15	13.7S	63.8E	75	5	36	68	112	137	147			0	-5	-5	-10	10	25		
02111906	16	13.8 S	62.8E	75	6	61	92	122	106	101			0	0	5	0	20	25		
02111912	17	14.4S	62.0E	75	5	13	42	63	76	88			0	-5	-5	15	20	25		
02112000	18	15.0S	59.9E	75	6	54	76	83	89				0	-5	15	25	30			
02112012	19	15.6 S	58.3E	75	23	37	63	78	97				-10	5	10	15	10			
02112100	20	15.5S	56.8E	55	30	78	126	168	216				10	15	20	15	20			
02112112	21	14.8S	55.4E	45	0	19	51	86	158				0	0	0	0	0			
02112200	22	13.8S	54.2E	35	18	27							0	-5						
02112206		13.2S	53.6E	35																
02112212		12.8S	53.0E	35																
02112218		12.35	52.3E	30																
02112300		11.7S	51.7E	30																
02112306		11.0S	51.3E	30																
02112312		10.5S	51.0E	25																

02112318		10.1 S	50.9 E	25																
02112400		9.5 S	50.9 E	25																

Figure 2-03S-1. $171657 Z$ November 2002 TRMM color composite of TC 03S (Boura), 410 nm southwest of Diego Garcia, with an estimated intensity of 75 knots.

Figure 2-03S-2. $181407 Z$ November 2002 enhanced infrared image of TC 03S (Boura), 555 nm southwest of Diego Garcia, with an estimated intensity of 75 knots.

TROPICAL CYCLONE 03S (BOURA)

15-22 NOV 2002

Time Intensity for 03S

Intensity (kts)

Tropical Cyclone (TC) 03 (Boura)*

First Poor: 1800Z 14 Nov 02

First Fair : 2300Z 14 Nov 02
First TCFA : 0830Z 15 Nov 02

First Warning : 1200Z 15 Nov 02

Last Warning : 0000Z 22 Nov 02, Dissipated
Max Intensity : 75 kts, gusts to 90 kts
Landfall : None

Total Warnings : 22
Remarks:
(1) Tropical Cyclone (TC) 03S was first noted as a tropical disturbance on 14 November 2002, as it developed in conjunction with an equatorial westerly wind-burst. TC 03S became a significant tropical cyclone approximately 205 nm east-southeast of Diego Garcia. TC 03S tracked southwestward towards Mauritius until 20 November at $18 Z$ under the steering influence of a midlevel subtropical ridge to the southeast. Subsequently, a migatory high moving eastward off of Madagascar caused the cyclone to move northwest until it dissipated under strong vertical wind shear. The remnant low level circulation center to tracked north of Madagascar and dissipated.
(2) No damage was reported for this system.
*Named by WMO designated RSMC

Statistics for JTWC on TC03S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02111418		6.35	77.7E	25																
02111500		7.2S	77.2E	25																
02111506		8.15	76.7E	30																
02111512	1	8.8S	75.8E	35	13	17	32	94	141	276			0	0	-5	-10	-15	-20		
02111518	2	9.45	75.0E	40	11	43	99	169	187	281			0	5	5	-10	-20	-15		
02111600	3	9.95	74.1E	40	25	34	88	132	144	231			0	0	-5	-15	-25	-15		
02111606	4	10.4S	73.3E	40	5	42	77	89	106	151			0	0	-15	-25	-20	-15		
02111612	5	10.8S	72.5E	45	0	42	51	42	72	153			0	-5	-10	-15	-10	-10		
02111618	6	11.3S	71.5E	45	39	63	59	69	72	152			0	-15	-20	-15	-10	-15		
02111700	7	11.6 S	70.4E	55	67	77	64	88	71	159			-5	-10	-15	-10	-10	-15		
02111706	8	12.1S	69.5E	65	5	24	26	70	59	112			0	-5	0	0	0	5		
02111712	9	12.7S	68.8E	65	0	36	23	47	49	116			0	-5	0	0	-5	-10		
02111718	10	13.1S	68.2E	75	11	42	59	67	27	103			0	5	5	5	0	10		
02111800	11	13.4S	67.5E	75	12	44	54	31	43	117			0	5	0	-5	-5	15		
02111806	12	13.6S	66.5E	75	11	13	18	75	96	97			0	0	0	-5	5	20		
02111812	13	13.7S	65.5E	75	6	25	37	48	83	65			0	-5	-5	-10	-10	20		
02111818	14	13.7S	64.7E	75	0	12	64	104	139	164			0	-5	-5	0	0	25		
02111900	15	13.7S	63.8E	75	5	36	68	112	137	147			0	-5	-5	-10	10	25		
02111906	16	13.8S	62.8E	75	6	61	92	122	106	101			0	0	5	0	20	25		
02111912	17	14.4S	62.0E	75	5	13	42	63	76	88			0	-5	-5	15	20	25		
02112000	18	15.0S	59.9E	75	6	54	76	83	89				0	-5	15	25	30			
02112012	19	15.6S	58.3E	75	23	37	63	78	97				-10	5	10	15	10			
02112100	20	15.5S	56.8E	55	30	78	126	168	216				10	15	20	15	20			
02112112	21	14.8S	55.4E	45	0	19	51	86	158				0	0	0	0	0			
02112200	22	13.8S	54.2E	35	18	27							0	-5						
02112206		13.2 S	53.6E	35																
02112212		12.8 S	53.0E	35																
02112218		12.3S	52.3E	30																
02112300		11.7S	51.7E	30																
02112306		11.0S	51.3E	30																
02112312		10.5S	51.0E	25																
02112318		10.1S	50.9E	25																

02112400	9.5 S	50.9E	25																
02112406	9.15	50.8E	25																
02112412	8.7S	50.3E	25																
02112418	8.4S	49.7E	25																
02112500	8.15	49.2E	25																
02112506	7.85	48.7E	25																
02112512	7.5S	48.3E	25																
		AVERAGE		14	38	61	88	103	148		1	5		7	10	12	17		
		BIAS									0		2	-1	-3	-1	3		
		\# CASE		22	22	21	21	21	17		22		22	21	21	21	17		

Figure 2-03S-1. $171657 Z$ November 2002 TRMM color composite of TC $03 S$ (Boura), 410 nm southwest of Diego Garcia, with an estimated intensity of 75 knots.

Figure 2-03S-2. $181407 Z$ November 2002 enhanced infrared image of TC $03 S$ (Boura), 555 nm southwest of Diego Garcia, with an estimated intensity of 75 knots.

Time Intensity for 03S

Tropical Cyclone (TC) 04P (Yolande)*

First Poor : 0600Z 30 Nov 02

First Fair : 2300Z 03 Dec 02
First TCFA : $1130 Z 04$ Dec 02
First Warning : 1800Z 04 Dec 02
Last Warning : 0600Z 05 Dec 02, Extratropical
Max Intensity : 35 kts, gusts to 45 kts
Landfall : None

Total Warnings : 2
Remarks:
(1) The first satellite fix for Tropical Cyclone (TC) 04P occurred on 30 November in a cluster of convective cells embedded within the South Pacific Convergence Zone northeast of Fiji. Only two warnings were issued by JTWC for this system as it quickly transitioned to an extratropical low. TC 04P was a short-lived system whose entire life cycle occurred over open water with no damage or operational impacts reported.
*Named by WMO designated RSMC

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02120106		13.25	178.3W	25																
02120112		13.5S	178.0W	25																
02120118		13.8 S	177.6W	25																
02120200		14.1S	177.2W	25																
02120206		14.7S	177.2W	25																
02120212		15.1S	177.3W	25																
02120218		15.35	177.5W	25																
02120300		15.5S	177.6W	25																
02120306		15.65	177.8W	25																
02120312		15.7S	178.1W	25																
02120318		16.05	178.1W	25																
02120400		16.7S	178.1W	35																
02120406		17.8S	177.3W	30																
02120412		19.1S	176.3W	35																
02120418	1	19.8S	175.1W	35	0	57							5	0						
02120506	2	21.15	172.7W	35	12								0							
02120512		21.2 S	171.3W	30																
			AVERAGE			57							3	0						
			BIAS										3	0						
			\# CASE			1								1						

Figure 2-04P-1. 040924Z December 2002 multi-sensor satellite images of TC 04P (Yolande), 385 nm southwest of Pago Pago, with an estimated peak intensity of 40 knots.

TROPICAL CYCLONE 04P (YOLANDE)
 04-05 DEC 2002

Time Intensity for 04P

Tropical Cyclone (TC) 04P (Yolande)*

First Poor : 0600Z 30 Nov 02

First Fair : 2300Z 03 Dec 02
First TCFA : 1130Z 04 Dec 02

First Warning : 1800Z 04 Dec 02

Last Warning : 0600Z 05 Dec 02, Extratropical
Max Intensity : 35 kts, gusts to 45 kts
Landfall : None

Total Warnings : 2
Remarks:
(1) The first satellite fix for Tropical Cyclone (TC) 04P occurred on 30 November in a cluster of convective cells embedded within the South Pacific Convergence Zone northeast of Fiji. Only two warnings were issued by JTWC for this system as it quickly transitioned to an extratropical low. TC 04P was a short-lived system whose entire life cycle occurred over open water with no damage or operational impacts reported.
*Named by WMO designated RSMC

Statistics for JTWC on TC04P

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02120106		13.2S	178.3W	25																
02120112		13.5S	178.0W	25																
02120118		13.8S	177.6W	25																
02120200		14.1S	177.2W	25																
02120206		14.7S	177.2W	25																
02120212		15.1S	177.3W	25																
02120218		15.3S	177.5W	25																
02120300		15.5S	177.6W	25																
02120306		15.6S	177.8W	25																
02120312		15.7S	178.1W	25																
02120318		16.0S	178.1W	25																
02120400		16.7S	178.1W	35																
02120406		17.8S	177.3W	30																
02120412		19.1S	176.3W	35																
02120418	1	19.8S	175.1W	35	0	57							5	0						
02120506	2	21.1S	172.7W	35	12								0							
02120512		21.2S	171.3W	30																
			AVERAGE		6	57							3	0						
			BIAS										3	0						
			\# CASE		2	1							2	1						

Figure 2-04P-1. $040924 Z$ December 2002 multi-sensor satellite images of TC 04P (Yolande), 385 nm southwest of Pago Pago, with an estimated peak intensity of 40 knots.

TROPICAL CYCLONE 04P (YOLANDE)

Time Intensity for 04P
Intensity (kts)

Fix Date (Zulu)

Tropical Cyclone (TC) 05S (Crystal)*

First Poor : 0500Z 21 Dec 02

First Fair : 1800Z 22 Dec 02
First TCFA : 0200Z 23 Dec 02
First Warning : 1200Z 23 Dec 02
Last Warning : 0000Z 29 Dec 02, Extratropical
Max Intensity : 90 kts, gusts to 110 kts
Landfall : None
Total Warnings : 12
Remarks:
(1) Tropical Cyclone (TC) 05S was initially described as an area of disturbed weather 145 nm west of Diego Garcia on 21 December, 2002. TC 05S tracked southwestward under the influence of the low to mid-level steering ridge located southeast of the system as it intensified at near a Dvorak Tnumber per day.

By 0000Z on 25 December, microwave satellite imagery indicated some minor dry air entrainment into the system from the west, with a banding eye feature present. A longwave trough in the midtropospheric westerlies began deepening over the Mozambique Channel, and tracking eastward. This trough began to weaken the steering ridge southeast of TC 05S, creating a more poleward track by $0000 Z$ on 26 December. At $1800 Z$ on 26 December, TC 05S reached a maximum intensity of 90 knots while tracking southward and at 0000Z on 27 December, TC 05S passed 118 nm east of Mauritius. By 0000Z on 28 December, there was no longer an eye feature visible and the cyclone had begun extratropical transition and was finaled 24 hours later as an extratropical system.
(2) Despite having passed within 50 nm of St . Brandon and 118 nm of Mauritius, there were no reports of significant damage caused by this system.

*Named by WMO designated RSMC

Statistics for JTWC on TC05S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02122206		7.9S	69.1E	25																
02122212		8.4S	68.9E	25																
02122218		9.0S	68.6E	25																
02122300		9.6S	67.9E	25																
02122306		10.3S	67.2E	25																
02122312	1	11.0S	66.5E	35	5	21	42	42	26				0	-5	-10	-15	-10			
02122400	2	12.3S	65.0E	45	11	8	33	50	55				0	0	0	5	20			
02122412	3	13.5S	63.4E	55	11	8	6	32	72				0	0	0	15	15			
02122500	4	14.5S	62.2E	65	17	25	42	60	38				0	0	15	10	5			
02122512	5	15.6S	61.2E	75	6	38	61	77	84				0	15	5	-15	-20			
02122600	6	16.95	60.2E	70	12	6	25	43	69				0	-10	-30	-30	-25			
02122612	7	18.4S	59.7E	80	8	6	8	20	36				-10	-25	-30	-25	-20			
02122700	8	19.95	59.5E	90	5	8	12	42	25				0	0	0	5	30			
02122712	9	21.5S	59.9E	90	8	22	26	43					-10	-10	-10	15				
02122800	10	23.2S	60.6E	80	33	80	72						0	0	15					
02122812	11	25.0S	61.1E	70	8	20							0	20						
02122900	12	26.6S	62.9E	40	20								0							
			AVERAGE		12	22	33	46	51				2	8	12	15	18			
			BIAS										-2	-1	-5	-4	-1			
			\# CASE		12	11	10	9	8				12	11	10	9	8			

Figure 2-05S-1. 270300 Z December 2002 MET-5 visible image of TC $05 S$ (Crystal), 135 nm east of Mauritius island, with an estimated peak intensity of 90 knots.

Figure 2-05S-2. 270630Z December 2002 MODIS true-color image of TC 05S (Crystal), located 125 nm east-southeast of Mauritius, with an maximum intensity of 90 knots.

TROPICAL CYCLONE 05S (CRYSTAL)
 23-29 DEC 2002

Time Intensity for 05S

Intensity (kts)

Tropical Cyclone (TC) 05S (Crystal)*

First Poor : 0500Z 21 Dec 02

First Fair : 1800Z 22 Dec 02
First TCFA : 0200Z 23 Dec 02

First Warning : 1200Z 23 Dec 02
Last Warning : 0000Z 29 Dec 02, Extratropical
Max Intensity : 90 kts, gusts to 110 kts
Landfall : None
Total Warnings : 12
Remarks:
(1) Tropical Cyclone (TC) 05 S was initially described as an area of disturbed weather 145 nm west of Diego Garcia on 21 December, 2002. TC 05S tracked southwestward under the influence of the low to mid-level steering ridge located southeast of the system as it intensified at near a Dvorak Tnumber per day.

By 0000Z on 25 December, microwave satellite imagery indicated some minor dry air entrainment into the system from the west, with a banding eye feature present. A longwave trough in the midtropospheric westerlies began deepening over the Mozambique Channel, and tracking eastward. This trough began to weaken the steering ridge southeast of TC 05S, creating a more poleward track by $0000 Z$ on 26 December. At $1800 Z$ on 26 December, TC 05 S reached a maximum intensity of 90 knots while tracking southward and at 0000Z on 27 December, TC 05S passed 118 nm east of Mauritius. By $0000 Z$ on 28 December, there was no longer an eye feature visible and the cyclone had begun extratropical transition and was finaled 24 hours later as an extratropical system.
(2) Despite having passed within 50 nm of St. Brandon and 118 nm of Mauritius, there were no reports of significant damage caused by this system.

[^4]Statistics for JTWC on TC05S

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02122206		7.9S	69.1E	25																
02122212		8.4S	68.9E	25																
02122218		9.05	68.6E	25																
02122300		9.6 S	67.9E	25																
02122306		10.3S	67.2E	25																
02122312	1	11.0S	66.5E	35	5	21	42	42	26				0	-5	-10	-15	-10			
02122400	2	12.3S	65.0E	45	11	8	33	50	55				0	0	0	5	20			
02122412	3	13.5S	63.4E	55	11	8	6	32	72				0	0	0	15	15			
02122500	4	14.5S	62.2E	65	17	25	42	60	38				0	0	15	10	5			
02122512	5	15.6S	61.2E	75	6	38	61	77	84				0	15	5	-15	-20			
02122600	6	16.9S	60.2E	70	12	6	25	43	69				0	-10	-30	-30	-25			
02122612	7	18.4S	59.7E	80	8	6	8	20	36				-10	-25	-30	-25	-20			
02122700	8	19.9S	59.5E	90	5	8	12	42	25				0	0	0	5	30			
02122712	9	21.5S	59.9E	90	8	22	26	43					-10	-10	-10	15				
02122800	10	23.2S	60.6E	80	33	80	72						0	0	15					
02122812	11	25.0S	61.1E	70	8	20							0	20						
02122900	12	26.6S	62.9E	40	20								0							
			AVERAGE		12	22	33	46	51				2	8	12	15	18			
			BIAS										-2	-1	-5	-4	-1			
			\# CASE		12	11	10		8				12	11	10	9	8			

Figure 2-05S-1. $270300 Z$ December 2002 MET-5 visible image of TC 05S (Crystal), 135 nm east of Mauritius island, with an estimated peak intensity of 90 knots.

Figure 2-05S-2. 270630Z December 2002 MODIS true-color image of TC 05 S (Crystal), located 125 nm east-southeast of Mauritius, with an maximum intensity of 90 knots.

TROPICAL CYCLONE 05S (CRYSTAL)

23-29 DEC 2002

Time Intensity for 05S

Intensity (kts)

Tropical Cyclone (TC) 06P (Zoe)*

First Poor : 0600Z 24 Dec 02

First Fair : 1930Z 24 Dec 02
First TCFA : 0830Z 25 Dec 02
First Warning : 1200Z 25 Dec 02
Last Warning : 0000Z 01 Jan 03, Extratropical
Max Intensity : 155 kts, gusts to 190 kts
Landfall : None
Total Warnings : 14
Remarks:
(1) Tropical Cyclone (TC) 06P was initially detected and described as a tropical disturbance in the South Pacific Convergence Zone on 24 December, 2002. Rapid development of the tropical disturbance due to an excellent poleward outflow channel caused JTWC to issue the first warning by $1200 Z$ on 25 December.

Metsat data indicated that within 24 hours after the initial warning, the cyclone intensified from 35 knots to 75 knots, a rate of 2 Dvorak T-numbers per day. By $1200 Z$ on 27 December, TC 06P had intensified to 155 knots, a rate of 3 Dvorak T-numbers per day. This rapid development occurred due to consistently decreasing vertical wind shear and excellent outflow in all quadrants, especially in the poleward direction. After reaching peak intensity, TC 06P began to slow in track speed, eventually stalling and maintaining an intensity at or above 100 knots. After 0000Z on 30 December, TC 06P recurved towards the southeast as a mid-level trough influenced a weakness in the ridge and the cyclone began rapid extratropical transition. Extratropical transition occurred south-southwest of the Fiji Islands.
(2) TC 06P is noted for its 155 knot maximum intensity and the damage caused when the TC passed near several small islands in the Temotu Province of the Solomon Islands. Damage done by passage of TC 06P was reported as relatively light on the island of Anuta, with most structures remaining intact. Early reports indicated damage was substantial on the island of Tikopia, though
there was no initial loss of life or serious injuries reported. The islands have a combined population of approximately 3,700 individuals. During the first fly-over by a humanitarian mission after communications were lost with the islands, the devastation to the islands was reported as "total". Much of the vegetation used for food or shelter was denuded. Most major structures were damaged or destroyed. All fresh water sources with the exception of a spring accessible only at low tide were contaminated by salt water according to early reports. Based on the traditional lives of the inhabitants, self-sufficiency was not considered likely for Tikopia for several years.

*Named by WMO designated RSMC

Statistics for JTWC on TC06P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02122412		9.0 S	178.3W	15																
02122418		9.75	179.1W	25																
02122500		10.4S	180.0W	25																
02122506		10.8S	178.9E	30																
02122512	1	10.8S	177.6E	35	13	65	80	81	77				0	-10	-25	-35	-90			
02122600	2	10.7S	175.4E	55	11	37	77	85	122				0	-10	-20	-70	-65			
02122612	3	10.8S	174.0E	75	17	30	31	46	41				0	0	-50	-45	-30			
02122700	4	11.2S	172.5E	95	8	26	13	24	31				0	-45	-30	-20	0			
02122712	5	11.7S	170.7E	155	5	32	50	80	96				0	10	25	45	55			
02122800	6	12.1S	169.9E	155	8	13	55	75	97				0	10	35	45	40			
02122812	7	12.4 S	169.2E	145	6	59	71	77	91				0	20	30	25	40			
02122900	8	12.7S	169.5E	120	0	13	6	23	58				0	10	5	10	20			
02122912	9	13.5S	170.4E	100	8	21	50	56	54				0	-5	5	10	0			
02123000	10	14.4S	171.5E	95	8	25	55	41	36				0	5	20	5	0			
02123012	11	15.5S	172.3E	75	57	70	29	41					0	10	5	0				
02123100	12	16.8S	173.4E	55	26	79	111						0	-10	-10					
02123112	13	18.6S	174.8E	50	38	62							5	5						

03010100	14	20.7S	175.2E	45	34							0							
03010106		21.9S	175.9E	45															
			AVERAGE		18	41	52	5		0		0	12	22	28	34			
			BIAS									0	-1	-1	-3	-3			
			\# CASE		14	13	12	1		10		14	13	12	11	10			

Figure 2-06P-1. $280400 Z$ December 2002 GMS-5 visible imagery of TC 06P (Zoe), 230 nm northeast of Port Vila, Vanuatu, with an estimated peak intensity of 150 knots.

Figure 2-06P-2. $281013 Z$ December 200285 GHz SSM/I imagery of TC 06P (Zoe), 210 nm northeast of Port Vila, Vanuatu, with an estimated peak intensity of 155 knots.

Figure 2-06P-3. 292240Z December 2002 MODIS true-color image of TC 06P (Zoe), located 240 nm east-northeast of Port Vila, Vanuatu, with an intensity of 100 knots.

TROPICAL CYCLONE 06P (ZOE) 25 DEC 2002--01 JAN 2003

Time Intensity for 06P

Intensity (kts)

Tropical Cyclone (TC) 06P (Zoe)*

First Poor : 0600Z 24 Dec 02

First Fair : 1930Z 24 Dec 02
First TCFA : 0830Z 25 Dec 02
First Warning : 1200Z 25 Dec 02
Last Warning : 0000Z 01 Jan 03, Extratropical
Max Intensity : 155 kts, gusts to 190 kts
Landfall : None
Total Warnings : 14
Remarks:
(1) Tropical Cyclone (TC) 06P was initially detected and described as a tropical disturbance in the South Pacific Convergence Zone on 24 December, 2002. Rapid development of the tropical disturbance due to an excellent poleward outflow channel caused JTWC to issue the first warning by $1200 Z$ on 25 December.

Metsat data indicated that within 24 hours after the initial warning, the cyclone intensified from 35 knots to 75 knots, a rate of 2 Dvorak T-numbers per day. By $1200 Z$ on 27 December, TC 06P had intensified to 155 knots, a rate of 3 Dvorak T-numbers per day. This rapid development occurred due to consistently decreasing vertical wind shear and excellent outflow in all quadrants, especially in the poleward direction. After reaching peak intensity, TC 06P began to slow in track speed, eventually stalling and maintaining an intensity at or above 100 knots. After 0000 Z on 30 December, TC 06P recurved towards the southeast as a mid-level trough influenced a weakness in the ridge and the cyclone began rapid extratropical transition. Extratropical transition occurred south-southwest of the Fiji Islands.
(2) TC 06P is noted for its 155 knot maximum intensity and the damage caused when the TC passed near several small islands in the Temotu Province of the Solomon Islands. Damage done by passage of TC 06P was reported as relatively light on the island of Anuta, with most structures remaining intact. Early reports indicated damage was substantial on the island of Tikopia, though there was no initial loss of life or serious injuries reported. The islands have a combined population of approximately 3,700 individuals. During the first fly-over by a humanitarian mission after communications were lost with the islands, the devastation to the islands was reported as "total". Much of the vegetation used for food or shelter was denuded. Most major structures were damaged or destroyed. All fresh water sources with the exception of a spring accessible only at low tide were contaminated by salt water according to early reports. Based on the traditional lives
of the inhabitants, self-sufficiency was not considered likely for Tikopia for several years.
*Named by WMO designated RSMC

Statistics for JTWC on TC06P																				
	WRN	BEST	TRACK			OSIT	ION	ERR	ROR					ND	ERR	RS				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02122412		9.0 S	178.3W	15																
02122418		9.7S	179.1W	25																
02122500		10.4S	180.0W	25																
02122506		10.8S	178.9E	30																
02122512	1	10.8 S	177.6E	35	13	65	80	81	77				0	-10	-25	-35	-90			
02122600	2	10.7S	175.4E	55	11	37	77	85	122				0	-10	-20	-70	-65			
02122612	3	10.8 S	174.0E	75	17	30	31	46	41				0	0	-50	-45	-30			
02122700	4	11.2S	172.5E	95	8	26	13	24	31				0	-45	-30	-20	0			
02122712	5	11.7S	170.7E	155	5	32	50	80	96				0	10	25	45	55			
02122800	6	12.1S	169.9E	155	8	13	55	75	97				0	10	35	45	40			
02122812	7	12.4S	169.2E	145	6	59	71	77	91				0	20	30	25	40			
02122900	8	12.7S	169.5E	120	0	13	6	23	58				0	10	5	10	20			
02122912	9	13.5S	170.4E	100	8	21	50	56	54				0	-5	5	10	0			
02123000	10	14.4S	171.5E	95	8	25	55	41	36				0	5	20	5	0			
02123012	11	15.5S	172.3E	75	57	70	29	41					0	10	5	0				
02123100	12	16.8S	173.4E	55	26	79	111						0	-10	-10					
02123112	13	18.6S	174.8E	50	38	62							5	5						
03010100	14	20.7S	175.2E	45	34								0							
03010106		21.9S	175.9E	45																
			AVERAGE		18	41	52	57	70				0	12	22	28	34			
			BIAS										0	-1	-1	-3	-3			
			\# CASE		14	13	12	11	10				14	13	12	11	10			

Figure 2-06P-1. 280400Z December 2002 GMS-5 visible imagery of TC 06P (Zoe), 230 nm northeast of Port Vila, Vanuatu, with an estimated peak intensity of 150 knots.

Figure 2-06P-2. $281013 Z$ December 200285 GHz SSM/I imagery of TC 06P (Zoe), 210 nm northeast of Port Vila, Vanuatu, with an estimated peak intensity of 155 knots.

Figure 2-06P-3. $292240 Z$ December 2002 MODIS true-color image of TC 06P (Zoe), located 240 nm east-northeast of Port Vila, Vanuatu, with an intensity of 100 knots.

TROPICAL CYCLONE 06P (ZOE)
25 DEC 2002--01 JAN 2003

Time Intensity for 06P
Intensity (kts)

Fix Date (Zulu)

Tropical Cyclone (TC) 07S

First Poor : $1530 Z 25$ Dec 02
First Fair : N/A
First TCFA : 1800 Z 25 Dec 02
Last Warning : 1800 Z 28 Dec 02, Dissipated
Max Intensity : 30 kts, gusts to 40 kts
Landfall : None
Total Warnings : 5
Remarks:
(1) Tropical Cyclone (TC) 07S was first noted as a tropical disturbance west of Sumatra on 25
December 2002. The first warning was issued with an intensity of 30 knots on 26 December. TC
07S initially tracked poleward toward the Cocos Islands, then turned eastward after 27 December
under the influence of a near equatorial ridge located north of the cyclone. The cyclone was
tracked as a 30 knot cyclone for more than 8 days before dissipating.
(2) No damage or casualties were reported for this tropical cyclone.
(2) 02

(1) Tropical Cyclone (TC) 07S was first noted as a tropical disturbance west of Sumatra on 25 December 2002. The first warning was issued with an intensity of 30 knots on 26 December. TC $07 S$ initially tracked poleward toward the Cocos Islands, then turned eastward after 27 December under the influence of a near equatorial ridge located north of the cyclone. The cyclone was tracked as a 30 knot cyclone for more than 8 days before dissipating.
(2) No damage or casualties were reported for this tropical cyclone.

Statistics for JTWC on TC07S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	2	96	120
02122500		2.8 S	88.5E	25																
02122506		3.7S	87.9E	25																
02122512		4.75	87.4E	25																
02122518		5.7S	87.7E	25																
02122600		6.6 S	88.0E	25																
02122606		7.4S	88.4E	25																
02122612		8.1S	88.8E	25																
02122618	1	8.7S	89.1E	30	11	34	94	197	297				0	5	10	15	15			
02122706	2	9.2 S	89.8E	30	16	96	215	309	374				0	0	5	5	15			
02122718	3	9.2 S	91.0E	30	13	78	112	150	166				0	5	5	10	10			
02122806	4	9.35	92.7E	30	24	13	54	95					0	0	5	5				
02122818	5	9.8 S	93.7E	30	18	59							0	5						
02122900		9.95	94.0E	25																
02122906		9.8 S	94.2E	25																
02122912		9.5 S	94.1E	20																
02122918		9.6 S	93.8E	20																
02123000		9.85	93.2E	20																
02123006		9.95	92.8E	20																
02123012		10.0S	92.4E	20																
02123018		10.0S	92.0E	20																
02123100		9.95	91.7E	20																
02123106		9.8 S	91.5E	20																
02123112		9.95	91.3E	25																
02123118		10.0S	91.2E	25																
03010100		10.0S	91.5E	25																
03010106		9.8 S	91.4E	25																
03010112		9.85	91.2E	25																
03010118		9.9S	91.1E	25																
03010200		9.95	91.4E	25																
03010206		9.7S	91.2E	25																
03010212		9.75	91.0E	25																
03010218		9.7S	90.8E	25																
03010300		9.8 S	90.6E	20																
03010306		10.1S	90.7E	20																

			AVERAGE		17	56	119	188	279				0	3	6	9	13			
		BIAS										0	3	6	9	13				
			\# CASE		5	5	4	4	3				5	5	4	4	3			

Figure 2-07S-1. $261550 Z$ December 2002 color composite SSM/I image of TC 07S (No Name), 550 nm west-northwest of Cocos island. The system had an partially exposed low level circulation center with an estimated intensity of 25 knots.

Time Intensity for 07S

Intensity (kts)

Tropical Cyclone (TC) 07S

\square
First Poor : 1530Z 25 Dec 02
First Fair : N/A

First TCFA : 1800Z 25 Dec 02
First Warning : 1800Z 26 Dec 02
Last Warning : 1800Z 28 Dec 02, Dissipated
Max Intensity : 30 kts, gusts to 40 kts
Landfall : None

Total Warnings : 5
Remarks:
(1) Tropical Cyclone (TC) 07S was first noted as a tropical disturbance west of Sumatra on 25 December 2002. The first warning was issued with an intensity of 30 knots on 26 December. TC 07S initially tracked poleward toward the Cocos Islands, then turned eastward after 27 December under the influence of a near equatorial ridge located north of the cyclone. The cyclone was tracked as a 30 knot cyclone for more than 8 days before dissipating.
(2) No damage or casualties were reported for this tropical cyclone.

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02122500		2.8 S	88.5E	25																
02122506		3.7S	87.9E	25																
02122512		4.7S	87.4E	25																
02122518		5.7S	87.7E	25																
02122600		6.65	88.0E	25																
02122606		7.4S	88.4E	25																
02122612		8.15	88.8E	25																
02122618	1	8.7S	89.1E	30	11	34	94	197	297				0	5	10	15	15			
02122706	2	9.25	89.8E	30	16	96	215	309	374				0	0	5	5	15			
02122718	3	9.25	91.0E	30	13	78	112	150	166				0	5	5	10	10			
02122806	4	9.35	92.7E	30	24	13	54	95					0	0	5	5				
02122818	5	9.8S	93.7E	30	18	59							0	5						
02122900		9.95	94.0E	25																
02122906		9.8S	94.2E	25																
02122912		9.5S	94.1E	20																
02122918		9.6S	93.8E	20																
02123000		9.8 S	93.2E	20																
02123006		9.95	92.8E	20																
02123012		10.0S	92.4E	20																
02123018		10.0S	92.0E	20																
02123100		9.95	91.7E	20																
02123106		9.8 S	91.5E	20																
02123112		9.95	91.3E	25																
02123118		10.0S	91.2E	25																
03010100		10.0S	91.5E	25																
03010106		9.8S	91.4E	25																
03010112		9.8 S	91.2E	25																
03010118		9.95	91.1E	25																
03010200		9.95	91.4E	25																
03010206		9.7S	91.2E	25																
03010212		9.7S	91.0E	25																
03010218		9.7S	90.8E	25																
03010300		9.8 S	90.6E	20																
03010306		10.1S	90.7E	20																
			AVERAGE		17	56	119	188	279				0	3	6	9	13			
			BIAS										0	3	6	9	13			
			\# CASE		5	5	4	4	3				5	5	4	4	3			

Figure 2-07S-1. $261550 Z$ December 2002 color composite SSM/I image of TC 07S (No Name), 550 nm west-northwest of Cocos island. The system had an partially exposed low level circulation center with an estimated intensity of 25 knots.

TROPICAL CYCLONE 07S

26-28 DEC 2002

Time Intensity for 07S
Intensity (kts)

Tropical Cyclone (TC) 08S (Delfina)*

First Poor : 1100Z 30 Dec 02
First Fair : 1200Z 30 Dec 02
First TCFA : N/A
First Warning : 1800Z 30 Dec 02
Last Warning : 0600Z 01 Jan 03, Dissipated
Max Intensity : 55 kts, gusts to 70 kts
Landfall : Near Angoche, Mozambique on 31 December, 2002
Total Warnings : 4
Remarks:
(1) Tropical Cyclone (TC) 08S developed quickly in the Mozambique Channel and attained a maximum intensity of 55 knots just prior to making landfall in Mozambique. After landfall, the cyclone rapidly weakened. Over land, TC 08S continued to move westward and entered Malawi, entraining hot, desert air and continuing to interact with land. With the low level circulation center still identifiable, TC 08S then looped, headed southeast and re-entered the Mozambique Channel. After re-entering the Mozambique Channel, the cyclone tracked south for 72 hours before dissipating.
(2) Press reports indicated that TC 08S brought heavy rains and winds to Mozambique, causing a reported 58 fatalities. Reports further indicated that the cyclone left approximately 300,000 persons homeless, damaged crops, and causing infrastructure damage costing $\$ 3.5$ million.
*Named by WMO designated RSMC

DTG		BEST TRACK			POSITION ERRORS								WIND ERRORS							
	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02123012		16.4S	43.1E	30																
02123018	1	16.4S	42.4E	35	8	56	83	86					0	10	0	-25				
02123106	2	16.1S	41.6E	35	18	12	17	63					0	-10	-15	-5				
02123118	3	16.0S	40.4E	55	6	13	12						0	-5	0					
03010106	4	15.8S	39.2E	45	5	40							0	10						
03010112		15.7S	38.5E	30																
03010118		15.6 S	37.6E	25																
03010200		15.5S	36.7E	25																
03010206		15.4S	35.7E	25																
03010212		15.3S	35.2E	25																
03010218		15.1S	35.6E	25																
03010300		15.1S	35.7E	25																
03010306		15.1S	35.9E	25																
03010312		15.1S	36.1E	25																
03010318		15.0S	36.3E	25																
03010400		14.9S	36.7E	25																
03010406		14.9 S	37.1E	25																
03010412		14.8S	37.5E	25																
03010418		14.8 S	37.9E	25																
03010500		14.7S	38.3E	25																
03010506		14.8S	38.8E	25																
03010512		15.1S	39.2E	25																
03010518		15.4 S	39.6E	25																
03010600		15.9 S	39.9E	25																
03010606		16.5 S	39.4E	25																
03010612		17.1S	38.7E	25																
03010618		17.7S	38.2E	25																
03010700		18.4S	37.5E	25																
03010706		19.4S	37.4E	25																
03010712		20.4 S	37.6E	25																

03010718	21.4S	37.9E	25																	
03010800	22.1S	38.3E	25																	
03010806	22.9S	38.5E	25																	
03010812	23.7S	38.4E	25																	
03010818	24.5S	38.4E	25																	
03010900	25.5S	38.5E	25																	
03010906	26.5S	38.6E	25																	
03010912	27.5S	39.6E	25																	
		AVERAGE		10	30	37	74					0	9	5	5	15				
		BIAS										0	1		-5	-15				
		\# CASES		4	4	3	2					4	4		3	2				

Figure 2-08S-1. 312020 Z December 2002 multi-sensor satellite images of TC 08S (Delfina), located in the Mozambique channel, with an estimated intensity of 55 knots.

Figure 2-08S-2. $011105 Z$ January 2003 MODIS true-color image of TC 08S (Delfina), located over Mozambique, with an intensity of 30 knots.

TROPICAL CYCLONE 08S (DELFINA)

30 DEC 2002-01 JAN 2003

Time Intensity for 08 S

Intensity (kts)

| | |
| :--- |

Tropical Cyclone (TC) 08S (Delfina)*

First Poor : 1100Z 30 Dec 02
First Fair : 1200Z 30 Dec 02
First TCFA : N/A

First Warning : 1800Z 30 Dec 02
Last Warning : 0600Z 01 Jan 03, Dissipated
Max Intensity : 55 kts , gusts to 70 kts
Landfall : Near Angoche, Mozambique on 31 December, 2002
Total Warnings : 4
Remarks:
(1) Tropical Cyclone (TC) 08 S developed quickly in the Mozambique Channel and attained a maximum intensity of 55 knots just prior to making landfall in Mozambique. After landfall, the cyclone rapidly weakened. Over land, TC 08S continued to move westward and entered Malawi, entraining hot, desert air and continuing to interact with land. With the low level circulation center still identifiable, TC 08S then looped, headed southeast and re-entered the Mozambique Channel. After re-entering the Mozambique Channel, the cyclone tracked south for 72 hours before dissipating.
(2) Press reports indicated that TC 08S brought heavy rains and winds to Mozambique, causing a reported 58 fatalities. Reports further indicated that the cyclone left approximately 300,000 persons homeless, damaged crops, and causing infrastructure damage costing $\$ 3.5$ million.
*Named by WMO designated RSMC

DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
02123012		16.4S	43.1E	30																
02123018	1	16.4S	42.4E	35	8	56	83	86					0	10	0	-25				
02123106	2	16.1S	41.6E	35	18	12	17	63					0	-10	-15	-5				
02123118	3	16.0S	40.4E	55	6	13	12						0	-5	0					
03010106	4	15.8S	39.2E	45	5	40							0	10						
03010112		15.7S	38.5E	30																
03010118		15.6S	37.6E	25																
03010200		15.5S	36.7E	25																
03010206		15.4S	35.7E	25																
03010212		15.3S	35.2E	25																
03010218		15.1S	35.6E	25																
03010300		15.1S	35.7E	25																
03010306		15.1S	35.9E	25																
03010312		15.1S	36.1E	25																
03010318		15.0S	36.3E	25																
03010400		14.9S	36.7E	25																
03010406		14.9S	37.1E	25																
03010412		14.8S	37.5E	25																
03010418		14.8S	37.9E	25																
03010500		14.7S	38.3E	25																
03010506		14.8S	38.8E	25																
03010512		15.1S	39.2E	25																
03010518		15.4S	39.6E	25																
03010600		15.9S	39.9E	25																
03010606		16.5S	39.4E	25																
03010612		17.1S	38.7E	25																
03010618		17.7S	38.2E	25																
03010700		18.4S	37.5E	25																
03010706		19.4S	37.4E	25																
03010712		20.4S	37.6E	25																
03010718		21.4S	37.9E	25																
03010800		22.1S	38.3E	25																
03010806		22.9S	38.5E	25																
03010812		23.7S	38.4E	25																
03010818		24.5S	38.4E	25																
03010900		25.5S	38.5E	25																
03010906		26.5S	38.6E	25																
03010912		27.5S	39.6E	25																
			AVERAGE		10	30	37	74					0	9	5	15				
			BIAS										0	1	-5	-15				
			\# CASES		4	4	3	2					4	4	3	2				

Figure 2-08S-1. $312020 Z$ December 2002 multi-sensor satellite images of TC 08S (Delfina), located in the Mozambique channel, with an estimated intensity of 55 knots.

Figure 2-08S-2. $011105 Z$ January 2003 MODIS true-color image of TC $08 S$ (Delfina), located over Mozambique, with an intensity of 30 knots.

TROPICAL CYCLONE 08S (DELFINA)

30 DEC 2002-01 JAN 2003

Time Intensity for 08S
Intensity (kts)

Tropical Cyclone (TC) 09S (Ebula)*

First Poor : N/A
First Fair : 0600Z 06 Jan 03
First TCFA : $0330 Z 07$ Jan 03
First Warning : 0000Z 08 Jan 03
Last Warning : 0000 Z 12 Jan 03, Extratropical
Max Intensity : 65 kts, gusts to 80 kts
Landfall : None
Total Warnings : 9
Remarks:
(1) Tropical cyclone (TC) 09S developed approximately 115 nm south of Diego Garcia on 06
January 2003 . The cyclone initially drifted poleward and slowly intensified to 35 knots, then
increased speed as it intensified to 65 knots on 10 January. TC 09S maintained intensify for 48
hours until a mid-latitude frontal system approached from the southwest and TC 09S began
extratropical transition. Once TC 09S linked up with the frontal boundary, it weakended rapidly and
tracked to the southeast, completing extratropical transition by 12 January at 0000Z, when the
final warning was issued.
*Named by WMO designated RSMC

(1) Tropical cyclone (TC) 09S developed approximately 115 nm south of Diego Garcia on 06 January 2003. The cyclone initially drifted poleward and slowly intensified to 35 knots, then increased speed as it intensified to 65 knots on 10 January. TC 09S maintained intensify for 48 hours until a mid-latitude frontal system approached from the southwest and TC 09S began extratropical transition. Once TC 09S linked up with the frontal boundary, it weakended rapidly and tracked to the southeast, completing extratropical transition by 12 January at 0000Z, when the final warning was issued.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03010612		9.55	71.8E	25																
03010618		9.9S	71.5E	25																
03010700		10.4S	71.5E	25																
03010706		10.8S	71.2E	25																
03010712		10.9S	70.7E	25																
03010718		11.1S	70.2E	25																
03010800	1	11.6S	70.2E	35	36	76	55	26	29				0	10	0	5	0			
03010812	2	12.9S	70.6E	35	11	53	98	135	143				0	-10	-5	-10	-5			
03010900	3	14.3S	70.8E	50	13	76	90	77	46				0	5	5	15	20			
03010912	4	15.8S	71.3E	55	5	35	62	100	122				-5	-5	5	15	20			
03011000	5	17.7S	70.8E	65	16	59	112	92	88				0	10	5	5	5			
03011012	6	20.15	70.0E	65	11	24	13	77	190				0	10	10	10	15			
03011100	7	23.35	69.6E	60	22	44	46	115					0	5	10	15				
03011112	8	26.0S	69.9E	50	16	55	85						0	0	5					
03011200	9	27.5S	71.2E	40	12	41							0	0						
03011206		28.1S	72.0E	35																
03011212		28.4S	73.1E	30																
			AVERAGE		16	51	70	89	103				1	6	6	11	11			
			BIAS										-1	3	4	8	9			
			\# CASES		9	9	8	7	6				9	9	8	7	6			

Figure 2-09S-1. 100920Z January 2003 MODIS true-color image of TC 09S (Ebula), located 840 nm east of La Reunion, with a maximum intensity of 65 knots.

Figure 2-09S-2. 101030Z January 2003 MET-5 visible image of TC 09 S (Ebula), 770 nm south of Diego Garcia. The exposed low level circulation center to the north of the deep convection had a peak intensity of 65 knots.

TROPICAL CYCLONE 09S (EBULA)
08-12 JAN 2003

Time Intensity for 09S

Intensity (kts)

Tropical Cyclone (TC) 09S (Ebula)*

First Poor : N/A
First Fair : 0600Z 06 Jan 03

First TCFA : 0330Z 07 Jan 03
First Warning : 0000Z 08 Jan 03

Last Warning : 0000Z 12 Jan 03, Extratropical
Max Intensity : 65 kts, gusts to 80 kts

Landfall : None
Total Warnings : 9
Remarks:
(1) Tropical cyclone (TC) 09S developed approximately 115 nm south of Diego Garcia on 06 January 2003. The cyclone initially drifted poleward and slowly intensified to 35 knots, then increased speed as it intensified to 65 knots on 10 January. TC 09S maintained intensify for 48 hours until a mid-latitude frontal system approached from the southwest and TC 09S began extratropical transition. Once TC 09S linked up with the frontal boundary, it weakended rapidly and tracked to the southeast, completing extratropical transition by 12 January at 0000Z, when the final warning was issued.
*Named by WMO designated RSMC

Statistics for JTWC on TC09S

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03010612		9.5 S	71.8 E	25																
03010618		9.9S	71.5E	25																
03010700		10.4 S	71.5E	25																
03010706		10.8S	71.2E	25																
03010712		10.9S	70.7E	25																
03010718		11.1S	70.2E	25																
03010800	1	11.6 S	70.2E	35	36	76	55	26	29				0	10	0	5	0			
03010812	2	12.9S	70.6E	35	11	53	98	135	143				0	-10	-5	-10	-5			
03010900	3	14.3S	70.8E	50	13	76	90	77	46				0	5	5	15	20			
03010912	4	15.8S	71.3E	55	5	35	62	100	122				-5	-5	5	15	20			
03011000	5	17.7S	70.8E	65	16	59	112	92	88				0	10	5	5	5			
03011012	6	20.1S	70.0E	65	11	24	13	77	190				0	10	10	10	15			
03011100	7	23.3S	69.6E	60	22	44	46	115					0	5	10	15				
03011112	8	26.0S	69.9E	50	16	55	85						0	0	5					
03011200	9	27.5S	71.2E	40	12	41							0	0						
03011206		28.1S	72.0E	35																
03011212		28.4S	73.1E	30																
			AVERAGE		16	51	70	89	103				1	6	6	11	11			
			BIAS										-1	3	4	8	9			
			\# CASES		9	9	8	7	6				9	9	8	7	6			

Figure 2-09S-1. 100920Z January 2003 MODIS true-color image of TC 09S (Ebula), located 840 nm east of La Reunion, with a maximum intensity of 65 knots.

Figure 2-09S-2. 101030Z January 2003 MET-5 visible image of TC 09 S (Ebula), 770 nm south of Diego Garcia. The exposed low level circulation center to the north of the deep convection had a peak intensity of 65 knots.

TROPICAL CYCLONE 09S (EBULA)

08-12 JAN 2003

Time Intensity for 09S

Tropical Cyclone (TC) 10P (Ami)*

First Poor : N/A
First Fair : 1300Z 10 Jan 03
First TCFA : 0930Z 11 Jan 03
First Warning : $1800 Z 11$ Jan 03
Last Warning : 0600Z 15 Jan 03
Max Intensity : 110 kts, gusts to 135 kts
Landfall : None
Total Warnings : 8 plus 1 Amended Warning
Remarks:
(1) Tropical Cyclone (TC) 10P developed north of Samoa and the Fiji Islands on 10 January 2003 within the South Pacific Convergence Zone. The cyclone drifted slowly south initially, then began to increase in speed and rapidly intensify, attaining a peak intensity of 110 knots at 0000 Z on 14 January. TC 10P passed just east of the Fiji Islands, with an intensity of 95 knots. An approaching frontal boundary then began interacting with the cyclone, causing an increase in track speed and a change in track direction to the southeast as it began extratropical transition. Transition was completed by 0600 Z on 15 January while still a 70 knot system at which time the final warning was issued.
(2) Fiji was reported as having extensive flood damage, with 500 villagers left homeless and two reported fatalities. Storm force winds also caused damage to power lines and buildings.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03011012		9.5 S	177.6W	15																
03011018		9.6 S	178.0W	15																
03011100		9.8 S	178.5W	25																
03011106		10.1S	179.0W	25																
03011112		10.7S	179.3W	30																
03011118	1	11.1S	179.4W	35	13	57	83	114	162				0	0	-15	-25	-30			
03011206	2	11.5S	179.7W	45	13	8	30	89	192				0	-10	-30	-45	-65			
03011218	3	12.5S	179.8E	65	6	6	31	106	219				0	-10	-20	-55	-50			
03011306	4	14.3S	179.7E	85	5	29	64	138	187				-5	-5	-20	-20	-5			
03011318	5	17.0S	180.0W	95	18	104	176	217					-5	-20	-20	-5				
03011400	5A	19.2S	179.2W	110	16	24	96	186					-5	-5	-5	0				
03011406	6	21.1S	177.9W	110	6	35	75						0	0	15					
03011418	7	25.2 S	173.3W	100	8	79							0	15						
03011506	8	28.7S	166.0W	70	16								0							
03011512		29.0S	161.7W	70																
			AVERAGE		12	43	79	142	190				2	8	18	25	38			
			BIAS										-2	-4	-14	-25	-38			
			\# CASES		9	8	7	6	4				9	8	7	6	4			

Figure 2-10P-1. $130933 Z$ January 2003 multi-sensor satellite images of TC 10P (Ami), 170 nm northeast of Suva, Fiji. The system had just begun intensification with an estimated intensity of 80 knots.

Figure 2-10P-2. $132200 Z$ January 2003 MODIS true-color image of TC 10P (Ami), located over the Fiji Islands, with an intensity of 95 knots.

Figure 2-10P-3. $140916 Z$ January 2003 enhanced infrared image of TC 10P (Ami), 150 nm northeast of Suva, Fiji. The system had its peak intensification with estimated intensity of 110 knots.

TROPICAL CYCLONE 10P (AMI)
11-15 JAN 2003

Time Intensity for 10P

Intensity (kts)

Fix Date (Zulu)

Tropical Cyclone (TC) 10P (Ami)*

First Poor : N/A
First Fair: 1300Z 10 Jan 03

First TCFA : 0930Z 11 Jan 03
First Warning : 1800Z 11 Jan 03
Last Warning : 0600Z 15 Jan 03
Max Intensity : 110 kts, gusts to 135 kts

Landfall : None
Total Warnings : 8 plus 1 Amended Warning
Remarks:
(1) Tropical Cyclone (TC) 10P developed north of Samoa and the Fiji Islands on 10 January 2003 within the South Pacific Convergence Zone. The cyclone drifted slowly south initially, then began to increase in speed and rapidly intensify, attaining a peak intensity of 110 knots at 0000 Z on 14 January. TC 10P passed just east of the Fiji Islands, with an intensity of 95 knots. An approaching frontal boundary then began interacting with the cyclone, causing an increase in track speed and a change in track direction to the southeast as it began extratropical transition. Transition was completed by 0600 Z on 15 January while still a 70 knot system at which time the final warning was issued.
(2) Fiji was reported as having extensive flood damage, with 500 villagers left homeless and two reported fatalities. Storm force winds also caused damage to power lines and buildings.
*Named by WMO designated RSMC

Statistics for JTWC on TC10P

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03011012		9.5S	177.6W	15																
03011018		9.6 S	178.0W	15																
03011100		9.85	178.5W	25																
03011106		10.1S	179.0W	25																
03011112		10.7S	179.3W	30																
03011118	1	11.1S	179.4W	35	13	57	83	114	162				0	0	-15	-25	-30			
03011206	2	11.5S	179.7W	45	13	8	30	89	192				0	-10	-30	-45	-65			
03011218	3	12.5S	179.8E	65	6	6	31	106	219				0	-10	-20	-55	-50			
03011306	4	14.3S	179.7E	85	5	29	64	138	187				-5	-5	-20	-20	-5			
03011318	5	17.0S	180.0W	95	18	104	176	217					-5	-20	-20	-5				
03011400	5A	19.2S	179.2W	110	16	24	96	186					-5	-5	-5	0				
03011406	6	21.1S	177.9W	110	6	35	75						0	0	15					
03011418	7	25.2S	173.3W	100	8	79							0	15						
03011506	8	28.7S	166.0W	70	16								0							
03011512		29.0S	161.7W	70																
			AVERAGE		12	43	79	142	190				2	8	18	25	38			
			BIAS										-2	-4	-14	-25	-38			
			\# CASES		9	8	7	6	4				9	8	7	6	4			

Figure 2-10P-1. $130933 Z$ January 2003 multi-sensor satellite images of TC 10P (Ami), 170 nm northeast of Suva, Fiji. The system had just begun intensification with an estimated intensity of 80 knots.

Figure 2-10P-2. 132200Z January 2003 MODIS true-color image of TC 10P (Ami), located over the Fiji Islands, with an intensity of 95 knots.

Figure 2-10P-3. $140916 Z$ January 2003 enhanced infrared image of TC 10P (Ami), 150 nm northeast of Suva, Fiji. The system had its peak intensification with estimated intensity of 110 knots.

TROPICAL CYCLONE 10P (AMI)
11-15 JAN 2003

Time Intensity for 10P

Tropical Cyclone (TC) 11S (Fari)*

First Poor : 1800Z 20 Jan 03
First Fair : 0500Z 21 Jan 03
First TCFA : 1230Z 23 Jan 03
First Warning : 1800Z 23 Jan 03
Last Warning : 0000Z 31 Jan 03, Dissipated
Max Intensity : 55 kts, gusts to 70 kts
Landfall : None
Total Warnings : 9
Remarks:
(1) Tropical Cyclone (TC) 11S was first described as a tropical disturbance 20 January at 1800 Z . Initially, this system did not intensify and was finaled after only one warning. On 27 January, 2003 at 1800Z, another TCFA was issued for TC 11S. Six hours later, on January 28th 2003 at 00Z, JTWC issued the first warning following the second TCFA issuance. The cause of regeneration was due to TC 11S moving under the upper level ridge axis, improving upper level outflow conditions.

Approximately 24 hours after attaining warning status the cyclone made landfall near Mahanoro, Madagascar, with an intensity of 55 knots. After landfall, TC 11S tracked across Madagascar, and then into the Mozambique Channel. The movement of the system was towards the southwest into a weakness in the low to mid-level steering ridge. TC 11S dissipated 48 hours after it tracked back over the South Indian Ocean. Dissipation occurred as the system tracked into an environment of high vertical wind shear.
(2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

Statistics for JTWC on TC11S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03012100		11.2S	81.0E	20																
03012106		11.6S	81.0E	20																
03012112		12.0 S	81.1E	20																
03012118		12.4S	81.1E	20																
03012200		12.75	80.8E	20																
03012206		12.7S	80.2E	20																
03012212		13.0S	79.6E	20																
03012218		13.4S	78.6E	30																
03012300		13.8S	77.5E	30																
03012306		14.1S	76.5E	30																
03012312		14.5S	75.5E	30																
03012318	1	14.9S	74.4E	35	8	30	126	327	458				0	25	35	35	30			
03012406	2	15.2S	72.3E	20	30	115							0	0						
03012800	3	18.65	52.0E	35	16	13	34	135	205				0	-5	-20	-5	-5			
03012812	4	19.6S	50.2E	45	0	12	67	152	130				-5	-10	0	0	-5			
03012900	5	20.3S	48.6E	55	0	34	101	67	69				0	0	0	5	10			
03012912	6	21.1S	45.8E	35	30	73	66	30	16				0	0	5	10	10			
03013000	7	22.4S	42.7E	30	13	53	74	109					0	0	0	-5				
03013012	8	24.0S	42.2E	30	0	48	156						0	0	-5					
03013100	9	26.3S	42.7E	25	31	85	186						0	-5	-5					
03013106		27.6S	43.2E	25																
03013112		29.0S	43.7E	25																
03013118		30.5S	44.1E	25																
03020100		31.9S	44.7E	25																
03020106		33.2S	45.5E	25																
03020112		34.65	47.0E	25																

			AVERAGE		14	52	101	137	176				1	5	9	10	12			
		BIAS										-1	1	1	7	8				
			\# CASES		9	9	8	6	5				9	9	8	6	5			

Figure 2-11S-1. 281050 Z January 2003 MODIS true-color image of TC 11S (Fari), located 70 nm east of Madagascar, with an intensity of 45 knots.

Figure 2-11S-2. $290446 Z$ January 2003 multi-sensor satellite images of TC 11S (Fari), located on the east coast of Madagascar, with a peak intensity of 55 knots.

TROPICAL CYCLONE 11S (FARI)

23-31 JAN 2003

Time Intensity for 11 S
Intensity (kts)

Tropical Cyclone (TC) 11S (Fari)*

First Poor : 1800Z 20 Jan 03
First Fair : 0500Z 21 Jan 03
First TCFA : 1230Z 23 Jan 03
First Warning : 1800Z 23 Jan 03
Last Warning : 0000Z 31 Jan 03, Dissipated
Max Intensity : 55 kts , gusts to 70 kts

Landfall : None
Total Warnings : 9
Remarks:
(1) Tropical Cyclone (TC) 11S was first described as a tropical disturbance 20 January at 1800 Z. Initially, this system did not intensify and was finaled after only one warning. On 27 January, 2003 at 1800Z, another TCFA was issued for TC 11S. Six hours later, on January 28th 2003 at 00Z, JTWC issued the first warning following the second TCFA issuance. The cause of regeneration was due to TC 11 S moving under the upper level ridge axis, improving upper level outflow conditions.

Approximately 24 hours after attaining warning status the cyclone made landfall near Mahanoro, Madagascar, with an intensity of 55 knots. After landfall, TC 11S tracked across Madagascar, and then into the Mozambique Channel. The movement of the system was towards the southwest into a weakness in the low to mid-level steering ridge. TC 11S dissipated 48 hours after it tracked back over the South Indian Ocean. Dissipation occurred as the system tracked into an environment of high vertical wind shear.
(2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

Statistics for JTWC on TC11S

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03012100		11.2S	81.0E	20																
03012106		11.6S	81.0E	20																
03012112		12.0 S	81.1E	20																
03012118		12.4 S	81.1E	20																
03012200		12.7S	80.8E	20																
03012206		12.7S	80.2E	20																
03012212		13.0S	79.6E	20																
03012218		13.4S	78.6E	30																
03012300		13.8S	77.5E	30																
03012306		14.1S	76.5E	30																
03012312		14.5 S	75.5E	30																
03012318	1	14.9S	74.4E	35	8	30	126	327	458				0	25	35	35	30			
03012406	2	15.2S	72.3E	20	30	115							0	0						
03012800	3	18.6S	52.0E	35	16	13	34	135	205				0	-5	-20	-5	-5			
03012812	4	19.6S	50.2E	45	0	12	67	152	130				-5	-10	0	0	-5			
03012900	5	20.3S	48.6E	55	0	34	101	67	69				0	0	0	5	10			
03012912	6	21.15	45.8E	35	30	73	66	30	16				0	0	5	10	10			
03013000	7	22.4 S	42.7E	30	13	53	74	109					0	0	0	-5				
03013012	8	24.0S	42.2E	30	0	48	156						0	0	-5					
03013100	9	26.3S	42.7E	25	31	85	186						0	-5	-5					
03013106		27.6S	43.2E	25																
03013112		29.0S	43.7E	25																
03013118		30.5S	44.1E	25																
03020100		31.9S	44.7E	25																
03020106		33.2S	45.5E	25																
03020112		34.6S	47.0E	25																
			AVERAGE		14	52	101	137	176				1	5	9	10	12			
			BIAS										-1	1	1	7	8			
			\# CASES		9	9	8	6	5				9	9	8	6	5			

Figure 2-11S-1. 281050Z January 2003 MODIS true-color image of TC 11S (Fari), located 70nm east of Madagascar, with an intensity of 45 knots.

Figure 2-11S-2. $290446 Z$ January 2003 multi-sensor satellite images of TC 11S (Fari), located on the east coast of Madagascar, with a peak intensity of 55 knots.

TROPICAL CYCLONE 11S (FARI)

23-31 JAN 2003

Time Intensity for 11 S

Tropical Cyclone (TC) 12P (Beni)*

First Poor : N/A
First Fair : 1900Z 24 Jan 03
First TCFA : $2100 Z 24$ Jan 03
First Warning : 0000Z 25 Jan 03
Last Warning : $1200 Z 31$ Jan 03, Dissipation
Max Intensity : 125 kts, gusts to 150 kts
Landfall : None
Total Warnings : 14
Remarks:
(1) Tropical Cyclone (TC) 12P was initially described as a tropical disturbance north of Fiji on 24 January, 2003. Approximately 6 hours later, on 25 January at 0000Z, JTWC issued the first warning on this cyclone. Initial warning issuance occurred while the system was intensifying at a climatological rate and moving slowly west-southwest along the northwestern periphery of the low to mid level subtropical ridge.

TC 12P began to track southeastward along the western periphery of the steering ridge. At 0000Z on 29 January, TC 12P reached its peak intensification of 125 knots as it encountered a favorable environment of weak vertical wind shear and good outflow aloft. TC 12P then began to track southwestward as the system started its downward intensity trend and weakened.

Rapid dissipation started at approximately 1200 Z on 30 January due to TC 12P tracking into an environment of high vertical wind shear and decreasing outflow aloft.
(2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

Statistics for JTWC on TC12P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03012412		12.9 S	162.0E	20																
03012418		13.0S	161.7E	25																
03012500	1	13.1S	161.4E	30	6	17	57	71	67				5	10	15	15	20			
03012512	2	12.9S	160.9E	35	26	88	130	126	105				0	5	0	5	15			
03012600	3	12.4 S	161.0E	40	11	21	46	38	42				0	0	5	20	5			
03012612	4	12.7S	161.3E	50	5	6	29	27	12				0	5	10	-5	-10			
03012700	5	13.0 S	160.8E	55	18	50	71	72	81				5	15	5	-5	-35			
03012712	6	13.8S	160.8E	55	13	35	24	30	99				5	-10	-20	-55	-50			
03012800	7	14.7S	160.7E	75	5	17	58	106	186				0	-10	-45	-40	-20			
03012812	8	15.6S	161.1E	90	5	58	124	210	263				-5	-40	-30	-5	30			
03012900	9	16.5S	162.7E	125	8	60	144	190	147				0	5	20	45	70			
03012912	10	17.8S	164.9E	125	5	46	116	73	45				0	15	35	60	60			
03013000	11	19.1S	167.7E	105	6	29	35	140	244				10	30	60	65	65			
03013012	12	20.8S	169.3E	75	16	62	167	290	331				0	25	30	30	20			
03013100	13	22.35	168.0E	40	13	85	143	160	139				0	0	0	0	-5			
03013112	14	24.15	165.2E	30	42	90							-5	-5						
03013118		24.3 S	163.1E	30																
03020100		23.8 S	161.7E	25																
03020106		23.4 S	160.6E	25																
03020112		23.15	159.6E	25																
03020118		22.6 S	158.7E	25																
03020200		22.3 S	158.0E	25																
03020206		22.0 S	157.4E	25																
03020212		21.5 S	156.6E	25																
03020218		21.15	155.8E	25																

03020300	20.95	154.7E	25																
03020306	20.5S	153.7E	25																
03020312	20.3S	153.2E	25																
03020318	20.5S	152.7E	25																
03020400	20.75	152.1E	20																
03020406	20.6S	151.3E	20																
03020412	20.25	150.6E	20																
03020418	19.9S	150.2E	20																
03020500	20.15	149.7E	20																
		AVERAGE		13	47	88	118	135			3		13	21	27	31			
		BIAS									1		3	7	10	13			
		\# CASES		14	14	13	13	13			1	4	14	13	13	13			

Figure 2-12P-1. 282112 Z January 2003 GMS-5 visible imagery of TC 12P (Beni), 160 nm north of New Caledonia, with a peak intensity of 125 knots.

Figure 2-12P-2. $290315 Z$ January 2003 MODIS true-color image of TC 12P (Beni), located 190nm north of New Caledonia, with a maximum intensity of 125 knots.

Figure 2-12P-3. 291034Z January 200385 GHz SSM/I imagery of TC 12P (Beni), 180 nm north of New Caledonia, with a peak intensity of 125 knots.

TROPICAL CYCLONE 12P (BENI)

25-31 JAN 2003

Time Intensity for 12P

Intensity (kts)

Tropical Cyclone (TC) 12P (Beni)*

First Poor: N/A

First Fair : 1900Z 24 Jan 03
First TCFA : $2100 Z 24$ Jan 03

First Warning : 0000Z 25 Jan 03
Last Warning : 1200Z 31 Jan 03, Dissipation

Max Intensity : 125 kts, gusts to 150 kts
Landfall : None

Total Warnings : 14
Remarks:
(1) Tropical Cyclone (TC) 12P was initially described as a tropical disturbance north of Fiji on 24 January, 2003. Approximately 6 hours later, on 25 January at 0000Z, JTWC issued the first warning on this cyclone. Initial warning issuance occurred while the system was intensifying at a climatological rate and moving slowly west-southwest along the northwestern periphery of the low to mid level subtropical ridge.

TC 12P began to track southeastward along the western periphery of the steering ridge. At 0000Z on 29 January, TC 12P reached its peak intensification of 125 knots as it encountered a favorable environment of weak vertical wind shear and good outflow aloft. TC 12P then began to track southwestward as the system started its downward intensity trend and weakened.

Rapid dissipation started at approximately 1200 Z on 30 January due to TC 12P tracking into an environment of high vertical wind shear and decreasing outflow aloft.
(2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03012412		12.9 S	162.0E	20																
03012418		13.0S	161.7E	25																
03012500	1	13.1S	161.4E	30	6	17	57	71	67				5	10	15	15	20			
03012512	2	12.9 S	160.9E	35	26	88	130	126	105				0	5	0	5	15			
03012600	3	12.4 S	161.0E	40	11	21	46	38	42				0	0	5	20	5			
03012612	4	12.7S	161.3E	50	5	6	29	27	12				0	5	10	-5	-10			
03012700	5	13.0S	160.8E	55	18	50	71	72	81				5	15	5	-5	-35			
03012712	6	13.8S	160.8E	55	13	35	24	30	99				5	-10	-20	-55	-50			
03012800	7	14.7S	160.7E	75	5	17	58	106	186				0	-10	-45	-40	-20			
03012812	8	15.6S	161.1E	90	5	58	124	210	263				-5	-40	-30	-5	30			
03012900	9	16.5S	162.7E	125	8	60	144	190	147				0	5	20	45	70			
03012912	10	17.8S	164.9E	125	5	46	116	73	45				0	15	35	60	60			
03013000	11	19.1S	167.7E	105	6	29	35	140	244				10	30	60	65	65			
03013012	12	20.8S	169.3E	75	16	62	167	290	331				0	25	30	30	20			
03013100	13	22.3 S	168.0E	40	13	85	143	160	139				0	0	0	0	-5			
03013112	14	24.15	165.2E	30	42	90							-5	-5						
03013118		24.3S	163.1E	30																
03020100		23.8S	161.7E	25																
03020106		23.4 S	160.6E	25																
03020112		23.15	159.6E	25																
03020118		22.6 S	158.7E	25																
03020200		22.3 S	158.0E	25																
03020206		22.0 S	157.4E	25																
03020212		21.5S	156.6E	25																
03020218		21.15	155.8E	25																
03020300		20.95	154.7E	25																
03020306		20.5S	153.7E	25																
03020312		20.3S	153.2E	25																
03020318		20.5S	152.7E	25																
03020400		20.75	152.1E	20																
03020406		20.6S	151.3E	20																
03020412		20.2S	150.6E	20																
03020418		19.9 S	150.2E	20																
03020500		20.1S	149.7E	20																
			AVERAGE		13	47	88	118	135				3	13	21	27	31			
			BIAS										1	3	7	10	13			
			\# CASES		14	14	13	13	13				14	14	13	13	13			

Figure 2-12P-1. $282112 Z$ January 2003 GMS-5 visible imagery of TC 12P (Beni), 160 nm north of New Caledonia, with a peak intensity of 125 knots.

Figure 2-12P-2. $290315 Z$ January 2003 MODIS true-color image of TC 12P (Beni), located 190 nm north of New Caledonia, with a maximum intensity of 125 knots.

Figure 2-12P-3. $291034 Z$ January 200385 GHz SSM/I imagery of TC 12P (Beni), 180 nm north of New Caledonia, with a peak intensity of 125 knots.

TROPICAL CYCLONE 12P (BENI)

25-31 JAN 2003

Time Intensity for 12P
Intensity (kts)

Tropical Cyclone (TC) 13P (Cilla)*

First Poor : 0600Z 25 Jan 03

First Fair : 1900Z 25 Jan 03
First TCFA : 1300Z 26 Jan 03
First Warning : 0600Z 27 Jan 03
Last Warning : 1800Z 27 Jan 03, Extratropical
Max Intensity : 35 kts, gusts to 45 kts
Landfall : None

Total Warnings : $2+1$ Amended Warning
Remarks:
(1) Tropical Cyclone (TC) 13P developed in a broad monsoon trough on 25 January, 2003 approximately 380 nm west-northwest of Suva, Fiji and tracked eastward for one day and then southeastward over the next 5 days. The first warning was issued on the 27th of January at 0600Z with the final warning being issued as an amendment just 13 hours later. No operational impacts and no damage was reported.
*Named by WMO designated RSMC

DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120	
03012506		15.5 S	172.6 E	20																	
03012512		15.3 S	173.6 E	25																	

Figure 2-13P-1. $271833 Z$ January 2003 GOES-10 visible imagery of TC 13P (Cilla), shows a good convective band wrapping in from the north, 441 nm east-southeast of Suva, with a peak intensity of 35 knots.

TROPICAL CYCLONE 13P (CLLA)
27 JAN 2003

Time Intensity for 13P

Intensity (kts)

Tropical Cyclone (TC) 13P (Cilla)*

Figure 2-13P-1. $271833 Z$ January 2003 GOES-10 visible imagery of TC 13P (Cilla), shows a good convective band wrapping in from the north, 441 nm east-southeast of Suva, with a peak intensity of 35 knots.

TROPICAL CYCLONE 13P (CLLLA)
27 JAN 2003

Time Intensity for 13P
Intensity (kts)

Tropical Cyclone (TC) 14S (Fiona)*

First Poor : 1000Z 03 Feb 03

First Fair : 2030Z 04 Feb 03
First TCFA : 0500Z 05 Feb 03
First Warning : 1200Z 05 Feb 03
Last Warning : 0000Z 13 Feb 03, Dissipated
Max Intensity : 110 kts, gusts to 135 kts
Landfall : None

Total Warnings : 19
Remarks:
(1) Tropical Cyclone (TC) 14S developed approximately 180 nm south of Java around 3 February 2003. The cyclone initially tracked slowly west to west-southwestward (4-6 knots) while intensifying at the climatological rate of one Dvorak T-number per day. While tracking westsouthwestward, TC 14S attained a maximum intensity of 110 knots briefly at approximately 0600 Z on 09 February and then quickly weakened back to 100 knots, which was maintained for a further 24 hours. Subsequently, the cyclone began to weaken and move poleward. Increasing vertical wind shear caused decoupling of the deep convection from the low level circulation pattern. The final warning was issued on 13 February as the cyclone dissipated over open water.
(2) No operational impacts damage was reported.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020306		11.7S	115.3E	25																
03020312		11.7S	114.9E	25																
03020318		11.7S	114.5E	25																
03020400		11.7S	114.1E	20																
03020406		11.7S	113.7E	20																
03020412		11.7S	113.3E	20																
03020418		11.7S	112.9E	20																
03020500		11.7S	112.5E	20																
03020506		11.7 S	112.1E	30																
03020512	1	11.8S	111.5E	35	41	59	71	78	41	33			0	0	0	5	-5	-25		
03020518	2	11.9 S	110.8E	35	6	19	32	13	19	30			0	-5	0	-5	-15	-30		
03020600	3	12.0 S	110.1E	45	13	24	34	0	8	35			0	0	0	-10	-20	-25		
03020606	4	12.0 S	109.4E	50	0	6	17	29	32	76			0	0	-5	-15	-20	-35		
03020612	5	12.0S	108.7E	55	11	13	35	30	41	105			0	0	-10	-20	-25	-25		
03020618	6	12.0 S	108.0E	55	11	24	43	42	51	139			0	-5	-15	-20	-25	-15		
03020700	7	12.0 S	107.2E	60	18	43	56	64	81				0	-10	-20	-25	-20			
03020712	8	12.6 S	105.2E	75	11	17	13	0	13				0	-10	-15	-10	-5			
03020800	9	13.4S	103.6E	90	0	8	13	24	42				0	0	10	5	-5			
03020812	10	14.4S	101.8E	100	13	6	18	53	96				0	5	5	-5	-10			
03020900	11	15.4 S	99.9E	100	5	21	42	72	67				0	0	-10	-10	-10			
03020912	12	16.4S	97.7E	100	11	31	85	124	152				0	-10	-10	0	5			
03021000	13	16.7S	95.3E	100	5	60	122	180	254				0	0	0	0	10			
03021012	14	16.8S	93.4E	90	5	42	70	112	193				0	0	5	10	5			
03021100	15	17.6S	91.9E	80	16	25	62	82	93				0	-5	0	0	20			
03021112	16	18.6 S	91.1E	75	6	26	64	99					5	10	5	20				
03021200	17	20.0S	91.0E	60	0	25	42						0	0	15					
03021212	18	21.4 S	91.8E	55	0	21							0	15						
03021300	19	22.2 S	92.4E	30	13								0							
			AVERAGE		10	26	48	63	79	70			0	4	7	10	13	26		
			BIAS										0	-1	-3	-5	-8	-26		
			\# CASES		19	18	17	16	15	6			19	18	17	16	15	6		

Figure 2-14S-1. 081024Z February 2003 GMS-5 enhanced infrared imagery of TC 14S (Fiona), 325 nm east-southeast of the Cocos island, with a maximum intensity of 100 knots.

Figure 2-14S-2. 091124Z February 200385 GHz TRMM imagery of TC 14S (Fiona), 295 nm east-southeast of the Cocos island, with a maximum intensity of 100 knots.

TROPICAL CYCLONE 14S (FIONA) 05-13 FEB 2003

Time Intensity for 14 S

Tropical Cyclone (TC) 14S (Fiona)*

First Poor : 1000Z 03 Feb 03
First Fair : 2030Z 04 Feb 03
First TCFA : 0500Z 05 Feb 03
First Warning : 1200Z 05 Feb 03
Last Warning : 0000Z 13 Feb 03, Dissipated
Max Intensity : 110 kts, gusts to 135 kts
Landfall : None
Total Warnings : 19
Remarks:
(1) Tropical Cyclone (TC) 14S developed approximately 180 nm south of Java around 3 February 2003. The cyclone initially tracked slowly west to west-southwestward ($4-6$ knots) while intensifying at the climatological rate of one Dvorak T-number per day. While tracking westsouthwestward, TC 14S attained a maximum intensity of 110 knots briefly at approximately 0600 Z on 09 February and then quickly weakened back to 100 knots, which was maintained for a further 24 hours. Subsequently, the cyclone began to weaken and move poleward. Increasing vertical wind shear caused decoupling of the deep convection from the low level circulation pattern. The final warning was issued on 13 February as the cyclone dissipated over open water.
(2) No operational impacts damage was reported.
*Named by WMO designated RSMC

Statistics for JTWC on TC14S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020306		11.7S	115.3E	25																
03020312		11.7S	114.9E	25																
03020318		11.7 S	114.5E	25																
03020400		11.7S	114.1E	20																
03020406		11.7S	113.7E	20																
03020412		11.7S	113.3E	20																
03020418		11.7 S	112.9E	20																
03020500		11.7S	112.5E	20																
03020506		11.7S	112.1E	30																
03020512	1	11.8S	111.5E	35	41	59	71	78	41	33			0	0	0	5	-5	-25		
03020518	2	11.9 S	110.8E	35	6	19	32	13	19	30			0	-5	0	-5	-15	-30		
03020600	3	12.0S	110.1E	45	13	24	34	0	8	35			0	0	0	-10	-20	-25		
03020606	4	12.0 S	109.4E	50	0	6	17	29	32	76			0	0	-5	-15	-20	-35		
03020612	5	12.0S	108.7E	55	11	13	35	30	41	105			0	0	-10	-20	-25	-25		
03020618	6	12.0 S	108.0E	55	11	24	43	42	51	139			0	-5	-15	-20	-25	-15		
03020700	7	12.0S	107.2E	60	18	43	56	64	81				0	-10	-20	-25	-20			
03020712	8	12.6 S	105.2E	75	11	17	13	0	13				0	-10	-15	-10	-5			
03020800	9	13.4S	103.6E	90	0	8	13	24	42				0	0	10	5	-5			
03020812	10	14.4S	101.8E	100	13	6	18	53	96				0	5	5	-5	-10			
03020900	11	15.4S	99.9E	100	5	21	42	72	67				0	0	-10	-10	-10			
03020912	12	16.4 S	97.7E	100	11	31	85	124	152				0	-10	-10	0	5			
03021000	13	16.7S	95.3E	100	5	60	122	180	254				0	0	0	0	10			
03021012	14	16.8 S	93.4E	90	5	42	70	112	193				0	0	5	10	5			
03021100	15	17.6S	91.9E	80	16	25	62	82	93				0	-5	0	0	20			
03021112	16	18.6S	91.1E	75	6	26	64	99					5	10	5	20				
03021200	17	20.0S	91.0E	60	0	25	42						0	0	15					
03021212	18	21.4 S	91.8E	55	0	21							0	15						
03021300	19	22.2 S	92.4E	30	13								0							
			AVERAGE		10	26	48	63	79	70			0	4	7	10	13	26		
			BIAS										0	-1	-3	-5	-8	-26		
			\# CASES		19	18	17	16	15	6			19	18	17	16	15	6		

Figure 2-14S-1. $081024 Z$ February 2003 GMS-5 enhanced infrared imagery of TC 14S (Fiona), 325 nm east-southeast of the Cocos island, with a maximum intensity of 100 knots.

Figure 2-14S-2. $091124 Z$ February 200385 GHz TRMM imagery of TC 14S (Fiona), 295 nm east-southeast of the Cocos island, with a maximum intensity of 100 knots.

TROPICAL CYCLONE 14S (FIONA)
05-13 FEB 2003

Time Intensity for 14S
Intensity (kts)

Tropical Cyclone (TC) 15P (Dovi)*

First Poor : 2200Z 04 Feb 03
First Fair : 0230Z 05 Feb 03
First TCFA : 0700Z 05 Feb 03
First Warning : 1800Z 05 Feb 03
Last Warning : $1800 Z 10$ Feb 03, Extratropical
Max Intensity : 130 kts, gusts to 155 kts
Landfall : None
Total Warnings : 11
Remarks: None
*Named by WMO designated RSMC

Statistics for JTWC on TC15P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020418		10.2S	162.9W	20																
03020500		10.7S	162.9W	20																
03020506		11.35	163.0W	25																
03020512		12.0S	163.0W	30																
03020518	1	12.8 S	162.9W	30	11	31	71	92	108				0	-5	-25	-35	-60			

03020606	2	14.4 S	162.6 W	40	5	35	35	35	29				-5	-20	-30	-60	-75				
03020618	3	15.8 S	163.3 W	65	5	18	21	38	42					0	10	-15	-20	-10			
03020706	4	16.7 S	164.4 W	80	13	24	44	37	52				-5	-30	-35	-25	-10				
03020718	5	17.5 S	165.5 W	115	20	26	56	61	64				10	5	10	0	10				
03020806	6	18.3 S	166.6 W	130	13	26	45	61	72				0	0	-5	5	10				
03020818	7	19.4 S	168.0 W	130	12	22	41	50	87				0	-5	5	10	45				
03020906	8	20.8 S	168.9 W	125	0	25	37	20					0	10	15	35					
03020918	9	22.4 S	169.2 W	105	11	37	53						5	10	40						
03021006	10	24.0 S	168.8 W	90	17	42							-5	25							
03021018	11	25.4 S	168.7 W	50	38								5								
03021100		26.2 S	169.0 W	50																	
			AVERAGE		14	29	45	49	65				3	12	20	24	31				
			BIAS										0	0	-4	-11	-13				
			\# CASES		11	10	9	8	7				11	10	9	8	7				

Figure 2-15P-1. 080424Z February 2003 GMS-5 enhanced infrared imagery of TC 15P (Dovi), 388 nm southeast of Pago Pago island, with a peak intensity of 130 knots.

Figure 2-15P-2. 081800 Z February 2003 GOES-10 visible imagery of TC 15P (Dovi), 325 nm southeast of Pago Pago island, with a peak intensity of 130 knots.

TROPICAL CYCLONE 15P (DOVI)
05-10 FEB 2003

Time Intensity for 15P

Intensity (kts)

Tropical Cyclone (TC) 15P (Dovi)*

First Poor : 2200Z 04 Feb 03
First Fair : 0230Z 05 Feb 03
First TCFA : $0700 Z 05$ Feb 03

First Warning : 1800Z 05 Feb 03
Last Warning : 1800Z 10 Feb 03, Extratropical
Max Intensity : 130 kts, gusts to 155 kts
Landfall : None

Total Warnings : 11
Remarks: None
*Named by WMO designated RSMC

Statistics for JTWC on TC15P																				
	WRN	BEST T	TRACK			SIT	ION	V ER	ROR					ND	ERRO	RS				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020418		10.2 S	162.9W	20																
03020500		10.7S	162.9W	20																
03020506		11.35	163.0W	25																
03020512		12.0S	163.0W	30																
03020518	1	12.8 S	162.9W	30	11	31	71	92	108				0	-5	-25	-35	-60			
03020606	2	14.4S	162.6W	40	5	35	35	35	29				-5	-20	-30	-60	-75			
03020618	3	15.8S	163.3W	65	5	18	21	38	42				0	10	-15	-20	-10			
03020706	4	16.7S	164.4W	80	13	24	44	37	52				-5	-30	-35	-25	-10			
03020718	5	17.5S	165.5W	115	20	26	56	61	64				10	5	10	0	10			
03020806	6	18.3S	166.6W	130	13	26	45	61	72				0	0	-5	5	10			
03020818	7	19.4 S	168.0W	130	12	22	41	50	87				0	-5	5	10	45			
03020906	8	20.8S	168.9W	125	0	25	37	20					0	10	15	35				
03020918	9	22.4 S	169.2W	105	11	37	53						5	10	40					
03021006	10	24.0S	168.8W	90	17	42							-5	25						
03021018	11	25.4S	168.7W	50	38								5							
03021100		26.2S	169.0W	50																
			AVERAGE		14	29	45	49	65				3	12	20	24	31			
			BIAS										0	0	-4	-11	-13			
			\# CASES		11	10	9	8	7				11	10	9	8	7			

Figure 2-15P-1. 080424 Z February 2003 GMS-5 enhanced infrared imagery of TC 15P (Dovi), 388 nm southeast of Pago Pago island, with a peak intensity of 130 knots.

Figure 2-15P-2. 081800 Z February 2003 GOES-10 visible imagery of TC 15P (Dovi), 325 nm southeast of Pago Pago island, with a peak intensity of 130 knots.

Time Intensity for 15P
Intensity (kts)

Tropical Cyclone (TC) 16S (Gerry)*

First Poor : N/A
First Fair : 1800Z 07 Feb 03
First TCFA : 0630Z 08 Feb 03
First Warning : 1800Z 08 Feb 03
Last Warning : $1200 Z 15$ Feb 03, Dissipation
Max Intensity : 105 kts, gusts to 130 kts
Landfall : None
Total Warnings : 15
Remarks:
(1) Tropical Cyclone (TC) 16S developed approximately 430 Nm north-northwest of Mauritius within a well established monsoon trough consisting of 3 separate circulations that spanned across the South Indian Ocean. The other 2 circulations eventually became TCs 17S and 18S. Initially, TC 16S was caught in the weak equatorial steering flow of a low to mid level ridge to the southwest. TC 16S remained a weak system at the surface during this time, but maintained a well developed mid-level circulation. As the cyclone intensified, it made a quick turn south and curved towards the southeast as the steering ridge moved to the east of the system. TC 16S eventually went extratropical and JTWC issued the final warning on 15 February.

TC 16S reached a maximum intensity of 105 knots on 13 February when the upper level conditions improved and enhanced outflow into a mid-latitude trough. TC 16S passed within approximately 60 Nm northeast of Mauritius at its maximum intensity and weakened thereafter as it encountered increasing vertical wind shear.

TCs 16S, 17S, and 18S are an interesting case on how multiple TCs in one tropical basin behave and interact with each other in the open water. All systems developed at approximately the same latitude, yet displayed few signs of direct interaction through their life cycle.
(2) Reports indicated minimal damage on Mauritius with this system.

*Named by WMO designated RSMC

Statistics for JTWC on TC16S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020718		14.9 S	55.9E	25																
03020800		14.5S	56.1E	25																
03020806		14.15	56.2E	25																
03020812		13.7S	56.3E	30																
03020818	1	13.5S	56.1E	30	60	103	158	223	253				0	0	10	5	0			
03020906	2	13.0S	55.5E	35	0	32	105	116	127				0	10	10	10	15			
03020918	3	12.15	54.9E	35	8	53	101	123	147				0	0	-5	0	15			
03021006	4	11.4 S	54.4E	45	13	60	118	168	189				0	-5	0	15	30			
03021018	5	12.15	53.9E	55	50	113	193	200	171				0	5	20	25	15			
03021106	6	13.35	53.7E	60	0	44	38	19	57				0	15	20	0	-25			
03021118	7	15.5S	53.8E	60	21	34	49	91	123				-5	-5	-20	-40	-40			
03021206	8	16.7S	54.6E	65	8	29	85	125	146				-10	-30	-50	-45	-40			
03021218	9	18.0 S	56.1E	85	23	80	127	150	156				-10	-30	-30	-25	5			
03021306	10	19.4S	58.5E	105	0	49	87	103	124				0	15	20	50	55			
03021318	11	21.5S	60.9E	100	5	27	60	89					0	0	30	45				
03021400	12	22.6 S	61.8E	100	0	27	64	106					0	10	45	45				
03021412	13	24.7S	63.4E	75	12	20	48						0	25	15					
03021500	14	26.4 S	65.1E	35	34	6							0	5						
03021512	15	27.9 S	67.0E	30	12								5							
			AVERAGE		17	48	95	126	149				2	11	21	25	24			
			BIAS										-1	1	5	7	3			
			\# CASES		15	14	13	12	10				15	14	13	12	10			

Figure 2-16S-1. $131228 Z$ February 200385 GHz TRMM image of TC 16S (Gerry), 243 nm east of La Reunion island, with a peak intensity of 105 knots. The northern portion of the eye wall has just begun to weaken.

TROPICAL CYCLONE 16S (GERRY)

08-14 FEB 2003

Time Intensity for 16 S
Intensity (kts)

Tropical Cyclone (TC) 16S (Gerry)*

First Poor: N/A
First Fair : 1800Z 07 Feb 03
First TCFA : $0630 Z 08$ Feb 03

First Warning : 1800Z 08 Feb 03
Last Warning : 1200Z 15 Feb 03, Dissipation
Max Intensity : 105 kts, gusts to 130 kts
Landfall : None

Total Warnings : 15
Remarks:
(1) Tropical Cyclone (TC) 16S developed approximately 430 Nm north-northwest of Mauritius within a well established monsoon trough consisting of 3 separate circulations that spanned across the South Indian Ocean. The other 2 circulations eventually became TCs 17S and 18S. Initially, TC 16S was caught in the weak equatorial steering flow of a low to mid level ridge to the southwest. TC 16S remained a weak system at the surface during this time, but maintained a well developed mid-level circulation. As the cyclone intensified, it made a quick turn south and curved towards the southeast as the steering ridge moved to the east of the system. TC 16 S eventually went extratropical and JTWC issued the final warning on 15 February.

TC 16S reached a maximum intensity of 105 knots on 13 February when the upper level conditions improved and enhanced outflow into a mid-latitude trough. TC 16S passed within approximately 60 Nm northeast of Mauritius at its maximum intensity and weakened thereafter as it encountered increasing vertical wind shear.

TCs 16S, 17S, and 18S are an interesting case on how multiple TCs in one tropical basin behave and interact with each other in the open water. All systems developed at approximately the same latitude, yet displayed few signs of direct interaction through their life cycle.
(2) Reports indicated minimal damage on Mauritius with this system.
*Named by WMO designated RSMC

Figure 2-16S-1. 131228 February 200385 GHz TRMM image of TC 16S (Gerry), 243 nm east of La Reunion island, with a peak intensity of 105 knots. The northern portion of the eye wall has just begun to weaken.

TROPICAL CYCLONE 16S (GERRY)

08-14 FEB 2003

Time Intensity for 16S
Intensity (kts)

Tropical Cyclone (TC) 17S (Hape)*

First Poor : N/A
First Fair : 0630Z 09 Feb 03
First TCFA : 0530Z 10 Feb 03
First Warning : 1800Z 10 Feb 03
Last Warning : $1800 Z 14$ Feb 03, Dissipated
Max Intensity : 80 kts, gusts to 100 kts
Landfall : None

Total Warnings : 10
Remarks:
(1) Tropical Cyclone (TC) 17S was first detected as a tropical disturbance on 09 February 2003 and was initially forecast by JTWC to interact with TC 16S. Such interaction didn't take place and by the second warning the primary steering influence was a near equatorial ridge situated to the northeast. The system intensified at a Dvorak T-number a day and then stabilized near 80 knots as the system tracked eastward, south of the ridge. Outflow was enhanced by passing short-wave troughs, enabling the cyclone to attain and then maintain this intensity for approximately 48 hours. TC 17S subsequently moved equatorward as the near equatorial ridge weakened until 13 February at $1800 Z$. Thereafter, a subtropical ridge developed to the northeast and caused the cyclone to track poleward where it dissipated under strong vertical wind shear.
(2) No reports of damage caused by this cyclone were available.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020906		12.0 S	65.9E	25																
03020912		12.4 S	65.5E	25																
03020918		12.8 S	65.1E	25																
03021000		13.4S	64.9E	30																
03021006		14.0S	64.7E	30																
03021012		14.6S	64.5E	35																
03021018	1	15.3 S	64.3E	40	18	50	181	385	629				0	0	-25	-50	-45			
03021106	2	16.8S	64.4E	45	18	58	191	312	414				0	-15	-35	-30	-35			
03021118	3	17.6 S	66.0E	75	8	79	170	276	382				0	-15	5	10	10			
03021206	4	17.0S	68.0E	100	5	32	66	96	85				-20	0	15	10	20			
03021218	5	16.15	69.9E	90	34	66	74	36	31				-15	0	5	25	30			
03021306	6	15.1S	71.0E	80	5	25	62	66	130				0	0	25	30	65			
03021318	7	14.7S	72.0E	80	5	78	127	207					0	20	15	35				
03021406	8	15.8S	73.2E	65	26	57	144						0	-15	5					
03021418	9	17.3 S	74.4E	65	36	102							-5	15						
03021506	10	20.0 S	76.4E	35	18								0							
			AVERAGE		18	61	127	197	279				4	9	16	27	34			
			BIAS										-4	-1	1	4	8			
			\# CASES		10	9	8	7	6				10	9	8	7	6			

Figure 2-17S-1. $120438 Z$ February 200385 GHz SSM/I imagery of TC 17S (Hape), 625 nm south-southwest of Diego Garcia, with a increasing intensity of 75 knots.

TROPICAL CYCLONE 17S (HAPE)

10-14 FEB 2003

Time Intensity for 17 S

Intensity (kts)

- PGTW
- KGWC
- KWBC
- OTHER
- T-Numbers
- Best Track

Tropical Cyclone (TC) 17S (Hape)*

First Poor : N/A
First Fair : 0630Z 09 Feb 03
First TCFA : 0530Z 10 Feb 03

First Warning : 1800Z 10 Feb 03
Last Warning : 1800Z 14 Feb 03, Dissipated
Max Intensity : 80 kts, gusts to 100 kts
Landfall : None

Total Warnings : 10
Remarks:
(1) Tropical Cyclone (TC) 17S was first detected as a tropical disturbance on 09 February 2003 and was initially forecast by JTWC to interact with TC 16S. Such interaction didn't take place and by the second warning the primary steering influence was a near equatorial ridge situated to the northeast. The system intensified at a Dvorak T-number a day and then stabilized near 80 knots as the system tracked eastward, south of the ridge. Outflow was enhanced by passing short-wave troughs, enabling the cyclone to attain and then maintain this intensity for approximately 48 hours. TC 17S subsequently moved equatorward as the near equatorial ridge weakened until 13 February at 1800Z. Thereafter, a subtropical ridge developed to the northeast and caused the cyclone to track poleward where it dissipated under strong vertical wind shear.
(2) No reports of damage caused by this cyclone were available.
*Named by WMO designated RSMC

Statistics for JTWC on TC17S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020906		12.0 S	65.9E	25																
03020912		12.4 S	65.5E	25																
03020918		12.8 S	65.1E	25																
03021000		13.4S	64.9E	30																
03021006		14.0S	64.7E	30																
03021012		14.6S	64.5E	35																
03021018	1	15.3S	64.3E	40	18	50	181	385	629				0	0	-25	-50	-45			
03021106	2	16.8S	64.4E	45	18	58	191	312	414				0	-15	-35	-30	-35			
03021118	3	17.6S	66.0E	75	8	79	170	276	382				0	-15	5	10	10			
03021206	4	17.0S	68.0E	100	5	32	66	96	85				-20	0	15	10	20			
03021218	5	16.15	69.9E	90	34	66	74	36	31				-15	0	5	25	30			
03021306	6	15.15	71.0E	80	5	25	62	66	130				0	0	25	30	65			
03021318	7	14.7S	72.0E	80	5	78	127	207					0	20	15	35				
03021406	8	15.8S	73.2E	65	26	57	144						0	-15	5					
03021418	9	17.3S	74.4E	65	36	102							-5	15						
03021506	10	20.0S	76.4E	35	18								0							
			AVERAGE		18	61	127	197	279				4	9	16	27	34			
			BIAS										-4	-1	1	4	8			
			\# CASES		10	9	8	7	6				10	9	8	7	6			

Figure 2-17S-1. $120438 Z$ February 200385 GHz SSM/I imagery of TC 17S (Hape), 625 nm south-southwest of Diego Garcia, with a increasing intensity of 75 knots.

TROPICAL CYCLONE 17S (HAPE)
10-14 FEB 2003

Time Intensity for 17S
Intensity (kts)

- PGTW
- KGWC
- KWBC
- OTHER
- T-Numbers
- Best Track

Tropical Cyclone (TC) 18S (Isha)*

First Poor : 1800Z 03 Feb 03
First Fair : 0330Z 04 Feb 03
First TCFA : $2000 Z 04$ Feb 03
First Warning : 0000Z 11 Feb 03
Last Warning : 0000Z 14 Feb 03, Dissipated
Max Intensity : 45 kts, gusts to 55 kts
Landfall : None
Total Warnings : 7
Remarks:
(1) Tropical Cyclone (TC) 18 S developed approximately 200 nm northeast of Cocos Island on 03 February at 1800Z. The cyclone tracked westward until 09 February at $0600 Z$ and then altered track towards the southwest. The first warning was issued on 11 February at 0000 Z when TC 18S was approximately 900 nm west of Cocos Island. The cyclone then turned southeast as it passed poleward of the ridge axis.

TC 18 S reached a maximum intensity of only 45 kts by February 13 at 0000Z. The final warning for the cyclone was issued on February 14 as it dissipated over open ocean.
(2) No damage reports were received for TC 18 S .
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020318		9.8 S	99.2E	15																
03020400		10.2S	99.0E	15																
03020406		10.65	98.7E	25																
03020412		10.8S	98.2E	25																
03020418		10.9S	97.7E	25																
03020500		11.0S	97.2E	25																
03020506		11.1S	96.7E	25																
03020512		11.1S	96.2E	25																
03020518		11.2S	95.7E	25																
03020600		11.2S	95.0E	25																
03020606		11.1S	94.0E	25																
03020612		10.7S	93.0E	25																
03020618		10.2S	92.2E	25																
03020700		9.7S	91.7E	25																
03020706		9.65	91.3E	25																
03020712		9.4S	91.0E	25																
03020718		9.45	90.5E	25																
03020800		9.4S	90.0E	25																
03020806		9.5 S	89.1E	25																
03020812		9.65	88.2E	25																
03020818		9.75	87.3E	25																
03020900		9.95	86.6E	25																
03020906		10.1S	85.9E	25																
03020912		10.5S	85.3E	25																
03020918		10.8S	84.7E	25																
03021000		11.1S	84.0E	25																
03021006		11.6 S	83.1E	25																
03021012		12.3S	82.4E	25																
03021018		13.1S	81.8E	30																
03021100	1	14.0S	81.2E	30	0	65	139	185	201				0	10	5	10	10			

| 03021112 | 2 | $15.5 S$ | 81.6 E | 30 | 21 | 73 | 114 | 158 | 215 | | | | 0 | -5 | 0 | 0 | 5 | | | |
| :--- |
| 03021200 | 3 | 16.4 S | 82.7 E | 40 | 0 | 18 | 34 | 95 | 92 | | | | 0 | 5 | 5 | 10 | 25 | | | |
| 03021212 | 4 | 17.1 S | 83.6 E | 40 | 41 | 85 | 120 | 74 | 57 | | | | 0 | 0 | 5 | 15 | 20 | | | |
| 03021300 | 5 | $18.1 S$ | 84.4 E | 45 | 24 | 83 | 85 | 73 | | | | | 0 | 5 | 20 | 25 | | | | |
| 03021312 | 6 | $20.0 S$ | 85.4 E | 45 | 8 | 98 | 228 | | | | | | 0 | 5 | -5 | | | | | |
| 03021400 | 7 | $21.0 S$ | 85.2 E | 35 | 28 | 96 | | | | | | | 0 | -5 | | | | | | |
| 03021406 | | $20.5 S$ | 84.5 E | 35 | | | | | | | | | | | | | | | | |

Figure 2-18S-1. $121730 Z$ February 2003 Met-5 enhanced infrared image of TC 18 S (Isha), 791 nm southwest of Cocos island, with a maximum intensity of 45 knots.

TROPICAL CYCLONE 18S (ISHA)

11-14 FEB 2003

Time Intensity for 18 S

Intensity (kts)

- PGTW
- KGWC
- KWBC
- OTHER
- T-Numbers
- Best Track

Tropical Cyclone (TC) 18S (Isha)*

First Poor : 1800Z 03 Feb 03
First Fair : 0330Z 04 Feb 03

First TCFA : $2000 Z 04$ Feb 03
First Warning : 0000Z 11 Feb 03

Last Warning : 0000Z 14 Feb 03, Dissipated
Max Intensity : 45 kts, gusts to 55 kts
Landfall : None

Total Warnings : 7
Remarks:
(1) Tropical Cyclone (TC) 18S developed approximately 200 nm northeast of Cocos Island on 03 February at 1800Z. The cyclone tracked westward until 09 February at $0600 Z$ and then altered track towards the southwest. The first warning was issued on 11 February at 0000 Z when TC 18S was approximately 900 nm west of Cocos Island. The cyclone then turned southeast as it passed poleward of the ridge axis.

TC 18 S reached a maximum intensity of only 45 kts by February 13 at 0000Z. The final warning for the cyclone was issued on February 14 as it dissipated over open ocean.
(2) No damage reports were received for TC 18S.
*Named by WMO designated RSMC

Statistics for JTWC on TC18S																				
	WRN	BEST	TRACK			SIT	ION	ERRO	ORS					ND	ERR	OR				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03020318		9.8 S	99.2E	15																
03020400		10.2 S	99.0E	15																
03020406		10.6 S	98.7E	25																
03020412		10.8S	98.2E	25																
03020418		10.9S	97.7E	25																
03020500		11.0S	97.2E	25																
03020506		11.1S	96.7E	25																
03020512		11.1S	96.2E	25																
03020518		11.2S	95.7E	25																
03020600		11.2S	95.0E	25																
03020606		11.15	94.0E	25																
03020612		10.7S	93.0E	25																
03020618		10.2 S	92.2E	25																
03020700		9.7S	91.7E	25																
03020706		9.6 S	91.3E	25																
03020712		9.45	91.0E	25																
03020718		9.45	90.5E	25																
03020800		9.45	90.0E	25																
03020806		9.5S	89.1E	25																
03020812		9.6 S	88.2E	25																
03020818		9.7S	87.3E	25																
03020900		9.9S	86.6E	25																
03020906		10.1S	85.9E	25																
03020912		10.5S	85.3E	25																
03020918		10.8 S	84.7E	25																
03021000		11.15	84.0E	25																
03021006		11.6 S	83.1E	25																
03021012		12.3 S	82.4E	25																
03021018		13.1S	81.8E	30																
03021100	1	14.0S	81.2E	30	0	65	139	185	201				0	10	5	10	10			
03021112	2	15.5 S	81.6E	30	21	73	114	158	215				0	-5	0	0	5			
03021200	3	16.4S	82.7E	40	0	18	34	95	92				0	5	5	10	25			
03021212	4	17.1S	83.6E	40	41	85	120	74	57				0		5	15	20			
03021300	5	18.1S	84.4E	45	24	83	85	73						5	20	25				

03021312	6	$20.0 S$	85.4 E	45	8	98	228						0	5	-5					
03021400	7	21.0 S	85.2 E	35	28	96								0	-5					
03021406		20.5 S	84.5 E	35																
03021412		20.5 S	85.4 E	35																
			AVERAGE		18	74	120	117	141				0	5	7	12	15			
			BIAS											0	2	5	12	15		
			\# CASES		7	7	6	5	4				7	7	6	5	4			

Figure 2-18S-1. $121730 Z$ February 2003 Met-5 enhanced infrared image of TC 18 S (Isha), 791 nm southwest of Cocos island, with a maximum intensity of 45 knots.

TROPICAL CYCLONE 18S (ISHA)

11-14 FEB 2003

Time Intensity for 18 S
Intensity (kts)

Tropical Cyclone (TC) 19 S (Japhet)*

First Poor : 1800Z 23 Feb 03

First Fair : 1800Z 24 Feb 03
First TCFA : $2100 Z 25$ Feb 03
First Warning : 0000Z 26 Feb 03
Last Warning : $1200 Z 03$ Mar 03, Dissipated
Max Intensity : 115 kts, gusts to 140 kts
Landfall : South of Vilanculos, Mozambique on 02 March at approx $1700 Z$ with intensity of 85 knots.

Total Warnings : 12
Remarks:
(1) Tropical Cyclone (TC) 19S formed off the southwestern coast of Madagascar in the warm tropical waters of the Mozambique Channel. Initially, the cyclone was located in a weak steering environment, drifting slowly southward as it consolidated. The approach of a transitory ridge from the southwest altered the track west, followed by a weakness in the ridge which altered the track southwestward and provided an improved upper level environment for intensification. TC 19S attained a maximum intensity of 115 knots by 01 March and maintained this intensity for almost 24 hours.

TC 19S made landfall on 02 March at approximately $1700 Z$ just south of Vilanculos, Mozambique with an intensity of 85 knots. They cyclone then weakened rapidly as it moved onto land on a westward track. The remnants of TC 19S then drifted into central Zimbabwe and dissipated.
(2) The intense winds and torrential rains caused by TC 19S damaged infrastructure across southern and central Mozambique and regions of southern and eastern Zimbabwe. News accounts reported a total of 19 fatalities. The heavy tropical rains brought widespread flooding to the Save River basin. On a positive note, remnants of TC 19S brought much needed moisture to many areas in the region that had been experiencing drought.

Statistics for JTWC on TC19S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03022412		21.4S	42.3E	20																
03022418		21.2 S	42.6E	20																
03022500		21.4S	42.9E	20																
03022506		21.7 S	42.8E	25																
03022512		22.15	42.7E	25																
03022518		22.4S	42.4E	25																
03022600	1	22.35	41.5E	30	40	95	88	77	81				0	0	-5	-20	-15			
03022612	2	21.6 S	39.8E	35	12	64	104	124	151				0	0	-10	-15	-15			
03022700	3	21.4S	39.2E	45	8	49	63	102	187				0	-10	-10	-10	-65			
03022712	4	21.9 S	38.7E	65	8	11	8	77	162				-5	-5	-10	-45	-65			
03022800	5	22.5 S	38.0E	75	30	26	42	63	50				0	0	-25	-20	-15			
03022812	6	23.2S	37.6E	85	5	16	37	48	94				0	-25	-20	-15	0			
03030100	7	23.95	37.6E	115	0	30	90	183	240				0	0	5	15	35			
03030112	8	23.65	37.6E	115	6	49	95	107	127				0	10	15	30	30			
03030200	9	23.0 S	36.9E	105	8	57	86	110	130				0	5	25	20	10			
03030212	10	22.15	35.7E	90	8	19	37	66					-5	10	5	-5				
03030300	11	21.35	34.7E	65	8	17	48						-5	-15	-20					
03030312	12	20.8S	33.4E	60	11	42							-5	-15						
03030318		20.35	32.9E	55																
03030400		19.8S	32.5E	55																
			AVERAGE		12	40	63	96	136				2	8	14	20	28			
			BIAS										-2	-4	-5	-7	-11			
			\# CASES		12	12	11	10	9				12	12	11	10	9			

Figure 2-19S-1. $281140 Z$ February 2003 MODIS true-color image of TC 19S (Japhet), located in the Mozambique Channel, with an intensity of 85 knots.

Figure 2-19S-2. 010600 Z March 2003 Met-5 visible imagery of TC 19S (Japhet), located in the Mozambique channel, with a maximum intensity of 115 knots.

Figure 2-19S-3. $020630 Z$ March 2003 Met-5 visible imagery of TC 19S (Japhet), located in the Mozambique channel, just prior to landfall with an intensity of 95 knots.

TROPICAL CYCLONE 19S (JAPHET)

14 FEB - 03 MAR 2003

Time Intensity for 195

Intensity (kts)

Tropical Cyclone (TC) 19S (Japhet)*

First Poor : 1800Z 23 Feb 03

First Fair : 1800Z 24 Feb 03
First TCFA : $2100 Z 25$ Feb 03
First Warning : 0000Z 26 Feb 03
Last Warning : 1200Z 03 Mar 03, Dissipated
Max Intensity : 115 kts, gusts to 140 kts
Landfall : South of Vilanculos, Mozambique on 02 March at approx $1700 Z$ with intensity of 85 knots.

Total Warnings : 12
Remarks:
(1) Tropical Cyclone (TC) 19S formed off the southwestern coast of Madagascar in the warm tropical waters of the Mozambique Channel. Initially, the cyclone was located in a weak steering environment, drifting slowly southward as it consolidated. The approach of a transitory ridge from the southwest altered the track west, followed by a weakness in the ridge which altered the track southwestward and provided an improved upper level environment for intensification. TC 19S attained a maximum intensity of 115 knots by 01 March and maintained this intensity for almost 24 hours.

TC 19 S made landfall on 02 March at approximately $1700 Z$ just south of Vilanculos, Mozambique with an intensity of 85 knots. They cyclone then weakened rapidly as it moved onto land on a westward track. The remnants of TC 19S then drifted into central Zimbabwe and dissipated.
(2) The intense winds and torrential rains caused by TC 19S damaged infrastructure across southern and central Mozambique and regions of southern and eastern Zimbabwe. News accounts reported a total of 19 fatalities. The heavy tropical rains brought widespread flooding to the Save River basin. On a positive note, remnants of TC 19S brought much needed moisture to many areas in the region that had been experiencing drought.
*Named by WMO designated RSMC

Statistics for JTWC on TC19S

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03022412		21.4S	42.3E	20																
03022418		21.2 S	42.6E	20																
03022500		21.4 S	42.9E	20																
03022506		21.7S	42.8E	25																
03022512		22.15	42.7E	25																
03022518		22.4 S	42.4E	25																
03022600	1	22.35	41.5E	30	40	95	88	77	81				0	0	-5	-20	-15			
03022612	2	21.6 S	39.8E	35	12	64	104	124	151				0	0	-10	-15	-15			
03022700	3	21.4 S	39.2E	45	8	49	63	102	187				0	-10	-10	-10	-65			
03022712	4	21.9 S	38.7E	65	8	11	8	77	162				-5	-5	-10	-45	-65			
03022800	5	22.5 S	38.0E	75	30	26	42	63	50				0	0	-25	-20	-15			
03022812	6	23.25	37.6E	85	5	16	37	48	94				0	-25	-20	-15	0			
03030100	7	23.95	37.6E	115	0	30	90	183	240				0	0	5	15	35			
03030112	8	23.6 S	37.6E	115	6	49	95	107	127				0	10	15	30	30			
03030200	9	23.0 S	36.9E	105	8	57	86	110	130				0	5	25	20	10			
03030212	10	22.15	35.7E	90	8	19	37	66					-5	10	5	-5				
03030300	11	21.3 S	34.7E	65	8	17	48						-5	-15	-20					
03030312	12	20.85	33.4E	60	11	42							-5	-15						
03030318		20.35	32.9 E	55																
03030400		19.8S	32.5E	55																
			AVERAGE		12	40	63	96	136				2	8	14	20	28			
			BIAS										-2	-4	-5	-7	-11			
			\# CASES		12	12	11	10	9				12	12	11	10	9			

Figure 2-19S-1. $281140 Z$ February 2003 MODIS true-color image of TC 19S (Japhet), located in the Mozambique Channel, with an intensity of 85 knots.

Figure 2-19S-2. 010600Z March 2003 Met-5 visible imagery of TC 19S (Japhet), located in the Mozambique channel, with a maximum intensity of 115 knots.

Figure 2-19S-3. 020630Z March 2003 Met-5 visible imagery of TC 19S (Japhet), located in the Mozambique channel, just prior to landfall with an intensity of 95 knots.

TROPICAL CYCLONE 19S (JAPHET)

14 FEB - 03 MAR 2003

Time Intensity for 19 S

Tropical Cyclone (TC) 20S (Graham)*

First Poor : 1800Z 24 Feb 03 to 2300Z 26 Feb 03

First Fair : 0430Z 23 Feb 03 and 2300Z 26 Feb 03
First TCFA : 0230Z 27 Feb 03
First Warning : 1800Z 27 Feb 03
Last Warning : 0600Z 01 Mar 03, Dissipated
Max Intensity : 40 kts, gusts to 50 kts
Landfall : East of Mandora, Australia in the Eighty Mile Beach region
Total Warnings : 4
Remarks:
(1) Tropical Cyclone (TC) 20S was first noted as an exposed low level circulation displaced from the convective activity about 210 nm east-northeast of Port Hedland, Australia around 24 February 2003. This weak exposed tropical cyclone remained quasi-stationary for approximately 48 hours. After that period, the synoptic scale patterns changed and allowed for vertical recoupling and cyclone movement toward the southeast. Due to the close proximity to land and movement into the Joseph Bonaparte Gulf, only 4 warnings were issued before the cyclone made landfall and was finaled.
(2) No operational impacts and no damage was reported.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS									WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72		96	120	00	12	24	36	48	72	96	120
03022412		17.3S	118.5E	25																	
03022418		17.1S	118.4E	25																	
03022500		16.95	118.4E	25																	
03022506		16.7S	118.4E	25																	
03022512		16.6 S	118.6E	25																	
03022518		16.8S	118.7E	25																	
03022600		17.0S	118.8E	25																	
03022606		17.2S	118.9E	25																	
03022612		17.4S	119.0E	25																	
03022618		17.6S	119.1E	25																	
03022700		17.7S	119.4E	25																	
03022706		17.7S	119.8E	25																	
03022712		17.8S	120.2E	30																	
03022718	1	18.0S	120.5E	30	8	29	62	66						0	10	-10	-5				
03022806	2	18.6S	120.7E	30	21	42	51	90						5	5	0	5				
03022818	3	19.6 S	121.1E	35	8	46	112							0	0	5					
03030106	4	20.35	121.7E	25	53	112								0	10						
03030112		20.8 S	122.0E	20																	
03030118		21.5 S	122.2E	15																	
			AVERAGE		23	57	75	78						1	6	5	5				
			BIAS											1	6	-2	0				
			\# CASES		4	4	3	2							4	3	2				

Figure 2-20S-1. $281153 Z$ February 2003 multi-sensor satellite images of TC 20S (Graham), just off the northwest coast of Australia prior to landfall, with an intensity of 35 knots.

TROPICAL CYCLONE 20S (GRAHAM)
27 FEB-01 MAR 2003

Time Intensity for 20 S

Intensity (kts)

Fix Date (Zulu)

Tropical Cyclone (TC) 20S (Graham)*

First Poor : 1800Z 24 Feb 03 to $2300 Z 26$ Feb 03
First Fair : 0430Z 23 Feb 03 and 2300Z 26 Feb 03

First TCFA : 0230Z 27 Feb 03
First Warning : 1800Z 27 Feb 03
Last Warning : 0600Z 01 Mar 03, Dissipated
Max Intensity : 40 kts, gusts to 50 kts
Landfall : East of Mandora, Australia in the Eighty Mile Beach region
Total Warnings : 4
Remarks:
(1) Tropical Cyclone (TC) 20S was first noted as an exposed low level circulation displaced from the convective activity about 210 nm east-northeast of Port Hedland, Australia around 24 February 2003. This weak exposed tropical cyclone remained quasi-stationary for approximately 48 hours. After that period, the synoptic scale patterns changed and allowed for vertical recoupling and cyclone movement toward the southeast. Due to the close proximity to land and movement into the Joseph Bonaparte Gulf, only 4 warnings were issued before the cyclone made landfall and was finaled.
(2) No operational impacts and no damage was reported.
*Named by WMO designated RSMC

Figure 2-20S-1. $281153 Z$ February 2003 multi-sensor satellite images of TC 20S (Graham), just off the northwest coast of Australia prior to landfall, with an intensity of 35 knots.

TROPICAL CYCLONE 20S (GRAHAM)
27 FEB-01 MAR 2003

Time Intensity for 20 S
Intensity (kts)

- PGTW
KGWC
$-K W B C$
- T-Numbers
- Best Track

Fix Date (Zulu)

Tropical Cyclone (TC) 21S (Harriet)*

First Poor : 0730Z 28 Feb 03

First Fair : 1800Z 01 Mar 03
First TCFA : $2100 Z 01$ Mar 03
First Warning : 0600Z 02 Mar 03
Last Warning : 0000Z 09 Mar 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : None

Total Warnings : 21
Remarks:
(1) Tropical Cyclone (TC) 21S was first noted a a tropical disturbance on 28 February 2003. The cyclone tracked southwestward toward Australia, but development was hampered by dry air entrainment and moderate vertical wind shear. After crossing 110E, the cyclone slowed due to a developing sub-tropical ridge situated over western Australia. Subsequently and after 05 March, TC 21S adjusted to the steering environment and altered movement toward the southwest, well off the Australian coast and then dissipated approximately 295 nm west-northwest of Learmonth, Australia. Although JTWC issued 21 warnings on this tropical cyclone, it never intensified beyond 35 knots due to restrictive synoptic flow patterns.
(2) No damage was reported for this system.
*Named by WMO designated RSMC

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030106		12.8 S	102.8E	20																
03030112		13.1S	103.6E	20																
03030118		13.4 S	104.7E	25																
03030200		13.8S	105.9E	25																
03030206	1	14.1S	106.7E	30	0	13	32	67	105				5	15	20	25	25			
03030218	2	14.8S	108.4E	30	8	40	64	61	53				5	5	10	15	10			
03030306	3	14.7S	110.1E	30	5	13	26	6	48				5	10	10	10	10			
03030318	4	14.7S	111.5E	30	0	17	6	27	47				5	5	5	5	15			
03030406	5	14.9 S	112.5E	30	18	65	94	156	185				5	5	10	15	15			
03030418	6	15.2 S	114.1E	35	23	59	75	43	36	74			0	5	10	10	15	25		
03030500	7	15.8S	114.8E	35	29								0							
03030506	8	16.35	115.3E	35	13	46	48	13	72	117			0	5	5	10	15	20		
03030512	9	16.8 S	115.7E	30	20	27	25	33	73	134			0	-5	0	5	5	10		
03030518	10	17.4S	116.2E	30	18	54	65	80	106	169			0	0	0	5	15	20		
03030600	11	18.15	115.8E	35	11	28	53	79	123	145			0	0	5	10	20	30		
03030606	12	18.6 S	115.5E	35	46	74	129	166	210	190			0	0	5	15	15	25		
03030612	13	19.0 S	115.2E	35	51	91	128	170	202	110			0	0	0	10	10	20		
03030618	14	19.1S	114.8E	35	16	57	98	125	167				0	0	10	10	15			
03030700	15	19.05	114.5E	35	12	13	45	79	93				0	0	10	10	20			
03030706	16	19.0S	114.2E	35	13	13	33	57	71				0	5	10	15	15			
03030712	17	19.35	113.8E	35	5	47	90	94	47				0	5	10	15	10			
03030718	18	19.4S	113.4E	30	12	31	66	66					0	0	0	5				
03030800	19	19.6S	113.0E	30	8	38	60						0	0	0					
03030812	20	20.2 S	112.4E	30	0	26	74						0	5	0					
03030900	21	21.15	110.8E	25	28	96							0	0						
03030906		22.2 S	109.5E	25																
03030912		23.7S	108.5E	25																
			AVERAGE		16	42	64	78	102	134			1	4	6	11	14	21		
			BIAS										1	3	6	11	14	21		
			\# CASES		21	20	19	17	16	7			21	20	19	17	16	7		

Figure 2-21S-1. 022311Z March 2003 multi-sensor satellite images of TC 21S (Harriet), 502 nm northwest of Learmonth, Australia, with a maximum intensity of 35 knots.

Figure 2-21S-2. 022311 Z March 2003 37GHz TRMM imagery of TC 21S (Harriet), The exposed low level circulation center is 502 nm northwest of Learmonth, Australia, with a maximum intensity of 35 knots.

TROPICAL CYCLONE 21S (HARRIET)

Time Intensity for 21S

Intensity (kts)

- PGTW

KGWC

- KWBC
- T-Numbers
- Best Track

Fix Date (Zulu)

Tropical Cyclone (TC) 21S (Harriet)*

First Poor : 0730Z 28 Feb 03
First Fair : 1800Z 01 Mar 03

First TCFA : $2100 Z 01$ Mar 03
First Warning : 0600Z 02 Mar 03

Last Warning : 0000Z 09 Mar 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : None

Total Warnings : 21
Remarks:
(1) Tropical Cyclone (TC) 21 S was first noted a a tropical disturbance on 28 February 2003. The cyclone tracked southwestward toward Australia, but development was hampered by dry air entrainment and moderate vertical wind shear. After crossing 110E, the cyclone slowed due to a developing sub-tropical ridge situated over western Australia. Subsequently and after 05 March, TC 21S adjusted to the steering environment and altered movement toward the southwest, well off the Australian coast and then dissipated approximately 295 nm west-northwest of Learmonth, Australia. Although JTWC issued 21 warnings on this tropical cyclone, it never intensified beyond 35 knots due to restrictive synoptic flow patterns.
(2) No damage was reported for this system.
*Named by WMO designated RSMC

Statistics for JTWC on TC21S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030106		12.8 S	102.8E	20																
03030112		13.1S	103.6E	20																
03030118		13.4S	104.7E	25																
03030200		13.8S	105.9E	25																
03030206	1	14.1S	106.7E	30	0	13	32	67	105				5	15	20	25	25			
03030218	2	14.8S	108.4E	30	8	40	64	61	53				5	5	10	15	10			
03030306	3	14.7S	110.1E	30	5	13	26	6	48				5	10	10	10	10			
03030318	4	14.7S	111.5E	30	0	17	6	27	47				5	5	5	5	15			
03030406	5	14.9S	112.5E	30	18	65	94	156	185				5	5	10	15	15			
03030418	6	15.2S	114.1E	35	23	59	75	43	36	74			0	5	10	10	15	25		
03030500	7	15.8S	114.8E	35	29								0							
03030506	8	16.3S	115.3E	35	13	46	48	13	72	117			0	5	5	10	15	20		
03030512	9	16.8S	115.7E	30	20	27	25	33	73	134			0	-5	0	5	5	10		
03030518	10	17.4S	116.2E	30	18	54	65	80	106	169			0	0	0	5	15	20		
03030600	11	18.1S	115.8E	35	11	28	53	79	123	145			0	0	5	10	20	30		
03030606	12	18.6S	115.5E	35	46	74	129	166	210	190			0	0	5	15	15	25		
03030612	13	19.0S	115.2E	35	51	91	128	170	202	110			0	0	0	10	10	20		
03030618	14	19.1S	114.8E	35	16	57	98	125	167				0	0	10	10	15			
03030700	15	19.0S	114.5E	35	12	13	45	79	93				0	0	10	10	20			
03030706	16	19.0S	114.2E	35	13	13	33	57	71				0	5	10	15	15			
03030712	17	19.35	113.8E	35	5	47	90	94	47				0	5	10	15	10			
03030718	18	19.4S	113.4E	30	12	31	66	66					0	0	0	5				
03030800	19	19.6S	113.0E	30	8	38	60						0	0	0					
03030812	20	20.2S	112.4E	30	0	26	74						0	5	0					
03030900	21	21.1S	110.8E	25	28	96							0	0						
03030906		22.2S	109.5E	25																
03030912		23.75	108.5E	25																
			AVERAGE		16	42	64	78	102	134			1	4	6	11	14	21		
			BIAS										1	3	6	11	14	21		
			\# CASES		21	20	19	17	16	7			21	20	19	17	16	7		

Figure 2-21S-1. 022311 Z March 2003 multi-sensor satellite images of TC 21 S (Harriet), 502 nm northwest of Learmonth, Australia, with a maximum intensity of 35 knots.

Figure 2-21S-2. 022311 Z March 2003 37GHz TRMM imagery of TC 21S (Harriet), The exposed low level circulation center is 502 nm northwest of Learmonth, Australia, with a maximum intensity of 35 knots.

TROPICAL CYCLONE 21S (HARRIET) 02-09 MAR 2003

Time Intensity for 21S

Intensity (kts)

Tropical Cyclone (TC) 22P (Erica)*

First Poor : $2330 Z 03$ Mar 03

First Fair : 0600Z 04 Mar 03
First TCFA : 0630Z 04 Mar 03
First Warning : 1200Z 04 Mar 03
Last Warning : $0600 Z 15$ Mar 03, Extratropical
Max Intensity : 130 kts, gusts to 160 kts
Landfall : None

Total Warnings : 16 plus 2 Amended Warnings
Remarks:
(1) Tropical Cyclone (TC) 22 P was first noted as a tropical disturbance east-southeast of Cairns, Australia on 03 March, 2003. TC 22P formed and went to warning status within 14 hours of first official mention by JTWC. The cyclone weakened enough to final at 0000Z on 06 March. JTWC continued to monitor the remnants of TC 22P and when regeneration was detected the cyclone was warned on again by 10 March.

Over the next 48 hours the storm intensified at a climatological rate, attaining a 65 knot intensity, a rate of one Dvorak T-number per day. TC 22P then began to intensify rapidly, reaching the maximum intensity of 130 knots by 13 March, an increase of 2.5 Dvorak T-numbers in 18 hours. The rapid intensification was due to excellent outflow conditions combined with a weak vertical wind shear environment. During this period, TC 22P altered track toward New Caledonia, eventually skirting the entire southwestern coast of New Caledonia with an intensity of 130, 125 and 100 knots throughout. After passing New Caledonia, the cyclone encountered increased vertical wind shear and began extratropical transition.
(2) Reported damage to New Caledonia was significant, and included structural damage, power losses and flooding. Noumea was also damaged by the passage of the system according to news reports. Subsequent damage reports from New Caledonia indicated agricultural damage, water fouling and an increase in dengue fever. Two fatalities were also reported due to the passage of
the system, with many others injured.

*Named by WMO designated RSMC

Statistics for JTWC on TC22P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030400		20.15	152.4E	20																
03030406		20.8S	153.1E	25																
03030412	1	21.3 S	154.0E	30	18	103	130	155	187				5	5	5	10	5			
03030500	2	20.35	155.0E	30	51	108	135	187	277				0	-5	5	0	0			
03030512	3	19.0 S	155.3E	35	16	21	24	93	146				0	5	5	5	5			
03030600	4	17.6S	154.4E	30	11	42							0	0						
03031006	5	12.1S	157.8E	30	6	24	30	83	152				0	0	-5	-10	-15			
03031018	6	12.7S	158.2E	35	16	19	87	155	179				0	-5	-10	-15	-60			
03031106	7	13.4S	158.9E	45	13	55	98	138	167				0	-5	-10	-55	-65			
03031118	8	15.2 S	159.6E	55	0	33	64	103	130				0	-5	-45	-60	-60			
03031206	9	17.1S	159.9E	65	16	67	113	140	317				0	-45	-65	-60	-30			
03031212	10	17.95	160.4E	90	0	66	96	176	364				5	-35	-35	-10	5			
03031218	11	18.8S	160.8E	115	18	32	87	227	377				-15	-35	-35	-10	0			
03031300	11A	19.6S	161.3E	130	22	32	120	287	421				-5	5	25	30	35			
03031306	12	20.2 S	162.0E	130	0	41	173	273	370				10	25	40	45	70			
03031318	13	21.15	164.2E	125	12	118	188	278					-25	-5	0	25				
03031406	14	23.15	168.7E	90	8	56	150						-10	0	30					
03031418	15	25.9 S	173.5E	70	17	98							0	35						
03031506	16	28.8S	179.0E	30	19								15							
			AVERAGE		15	57	107	177	257				5	13	23	26	29			
			BIAS										-1	-4	-7	-8	-9			
			\# CASES		17	16	14	13	12				17	16	14	13	12			

Figure 2-22P-1. 130255Z March 2003 MODIS true-color image of TC 22P (Erica), located 165 nm west-northwest of New Caledonia, with a maximum intensity of 130 knots.

Figure 2-22P-2. 130501Z March 2003 GMS-5 visible satellite imagery of TC 22P (Erica), 945 nm east of Cairns, Australia, with an increasing intensity of 125 knots.

Figure 2-22P-3. 131850Z March 200385 GHz SSM/I imagery of TC 22P (Erica), 905 nm east of Cairns, Australia, with an increasing intensity of 100 knots.

TROPICAL CYCLONE 22P (ERICA)

04-15 MAR 2003

Time Intensity for 22P

Intensity (kts)

Tropical Cyclone (TC) 22P (Erica)*

First Poor : 2330Z 03 Mar 03

First Fair : 0600Z 04 Mar 03
First TCFA : 0630Z 04 Mar 03

First Warning : 1200Z 04 Mar 03
Last Warning : 0600Z 15 Mar 03, Extratropical

Max Intensity : 130 kts, gusts to 160 kts
Landfall : None
Total Warnings : 16 plus 2 Amended Warnings
Remarks:
(1) Tropical Cyclone (TC) 22P was first noted as a tropical disturbance east-southeast of Cairns, Australia on 03 March, 2003. TC 22P formed and went to warning status within 14 hours of first official mention by JTWC. The cyclone weakened enough to final at 0000Z on 06 March. JTWC continued to monitor the remnants of TC 22P and when regeneration was detected the cyclone was warned on again by 10 March.

Over the next 48 hours the storm intensified at a climatological rate, attaining a 65 knot intensity, a rate of one Dvorak T-number per day. TC 22P then began to intensify rapidly, reaching the maximum intensity of 130 knots by 13 March, an increase of 2.5 Dvorak T-numbers in 18 hours. The rapid intensification was due to excellent outflow conditions combined with a weak vertical wind shear environment. During this period, TC 22P altered track toward New Caledonia, eventually skirting the entire southwestern coast of New Caledonia with an intensity of 130, 125 and 100 knots throughout. After passing New Caledonia, the cyclone encountered increased vertical wind shear and began extratropical transition.
(2) Reported damage to New Caledonia was significant, and included structural damage, power losses and flooding. Noumea was also damaged by the passage of the system according to news reports. Subsequent damage reports from New Caledonia indicated agricultural damage, water fouling and an increase in dengue fever. Two fatalities were also reported due to the passage of the system, with many others injured.
*Named by WMO designated RSMC

Statistics for JTWC on TC22P

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030400		20.15	152.4E	20																
03030406		20.8S	153.1E	25																
03030412	1	21.3 S	154.0E	30	18	103	130	155	187				5	5	5	10	5			
03030500	2	20.35	155.0E	30	51	108	135	187	277				0	-5	5	0	0			
03030512	3	19.0 S	155.3E	35	16	21	24	93	146				0	5	5	5	5			
03030600	4	17.6S	154.4E	30	11	42							0	0						
03031006	5	12.1S	157.8E	30	6	24	30	83	152				0	0	-5	-10	-15			
03031018	6	12.7S	158.2E	35	16	19	87	155	179				0	-5	-10	-15	-60			
03031106	7	13.4 S	158.9E	45	13	55	98	138	167				0	-5	-10	-55	-65			
03031118	8	15.2 S	159.6E	55	0	33	64	103	130				0	-5	-45	-60	-60			
03031206	9	17.1S	159.9E	65	16	67	113	140	317				0	-45	-65	-60	-30			
03031212	10	17.9S	160.4E	90	0	66	96	176	364				5	-35	-35	-10	5			
03031218	11	18.8S	160.8E	115	18	32	87	227	377				-15	-35	-35	-10	0			
03031300	11A	19.6S	161.3E	130	22	32	120	287	421				-5	5	25	30	35			
03031306	12	20.2 S	162.0E	130	0	41	173	273	370				10	25	40	45	70			
03031318	13	21.15	164.2E	125	12	118	188	278					-25	-5	0	25				
03031406	14	23.15	168.7E	90	8	56	150						-10	0	30					
03031418	15	25.9 S	173.5E	70	17	98							0	35						
03031506	16	28.8S	179.0E	30	19								15							
			AVERAGE		15	57	107	177	257				5	13	23	26	29			
			BIAS										-1	-4	-7	-8	-9			
			\# CASES		17	16	14	13	12				17	16	14	13	12			

Figure 2-22P-1. $130255 Z$ March 2003 MODIS true-color image of TC 22P (Erica), located 165nm west-northwest of New Caledonia, with a maximum intensity of 130 knots.

Figure 2-22P-2. 130501Z March 2003 GMS-5 visible satellite imagery of TC 22P (Erica), 945 nm east of Cairns, Australia, with an increasing intensity of 125 knots.

Figure 2-22P-3. 131850 Z March 200385 GHz SSM/I imagery of TC 22P (Erica), 905 nm east of Cairns, Australia, with an increasing intensity of 100 knots.

TROPICAL CYCLONE 22P (ERICA)
04-15 MAR 2003

Time Intensity for 22P
Intensity (kts)

Tropical Cyclone (TC) 23S (Kalunde)*

First Poor : 1800Z 03 Mar 03
First Fair : 0330Z 04 Mar 03
First TCFA : $2130 Z 04$ Mar 03
First Warning : 0600Z 05 Mar 03
Last Warning : $1200 Z 15$ Mar 03, Extratropical
Max Intensity : 140 kts, gusts to 170 kts
Landfall : None
Total Warnings : 21 plus 2 Amended Warnings
Remarks:
(1) Tropical Cyclone (TC) 23 S developed approximately 445 nm southeast of Diego Garcia around 03 March 2003. The cyclone remained quasi-stationary for 48 hours then began to track southwestward toward a weakness in the mid-level subtropical ridge. As it tracked it intensfied, developed and eye, then rapidly intensified to 140 knots in a favorable upper level environment, with excellent outflow aloft and very weak vertical wind shear. TC 23 S then began to track southwestward and weaken over the next 48 hours as the eye dissipated and the cyclone lost some outflow. Afterwards, the cyclone tracked poleward, rapidly weakened and transitioned into an extratropical system.
(2) No damage was reported for this system.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030318		10.7S	78.4E	15																
03030400		10.9S	78.5E	15																
03030406		11.2 S	78.6E	25																
03030412		11.5S	78.7E	25																
03030418		11.5 S	78.4E	30																
03030500		11.5S	78.0E	35																
03030506	1	11.3 S	77.5E	30	8	31	34	8	50				5	5	10	10	0			
03030518	2	10.9 S	76.7E	40	11	40	35	12	48				0	5	5	-5	-25			
03030600	2A	11.15	76.5E	40	37	62	116	178	245				0	-5	-5	-30	-50			
03030606	3	11.2 S	76.2E	45	8	19	59	124	192				0	0	-10	-30	-60			
03030618	4	11.8 S	75.0E	55	0	13	34	71	99				-5	-10	-30	-55	-40			
03030706	5	12.5 S	73.6E	75	8	29	47	52	52				5	-15	-40	-25	-10			
03030718	6	13.4S	72.0E	105	8	47	59	37	76				10	-15	0	15	25			
03030800	6A	13.7S	71.2E	130	8	29	8	25	152				10	15	30	40	45			
03030812	7	14.4S	69.7E	130	0	12	8	12	24				10	30	30	25	40			
03030900	8	15.3 S	68.8E	120	5	33	58	73	122				0	5	0	15	10			
03030912	9	16.1S	67.9E	115	0	8	25	21	47				0	-5	0	-5	-10			
03031000	10	16.7S	67.1E	115	0	13	18	54	112				-15	-10	-15	-20	-30			
03031012	11	17.4 S	66.4E	100	6	17	24	46	72				-5	-10	-15	-25	-30			
03031100	12	17.9S	65.6E	100	0	25	39	44	51				0	-5	-15	-25	-20			
03031112	13	18.4 S	64.9E	100	0	6	8	29	75				0	-5	-10	5	5			
03031200	14	18.8S	64.3E	105	0	6	41	84	115				0	-5	10	10	25			
03031212	15	19.5S	63.9E	105	8	13	36	69	115				0	10	15	30	30			
03031300	16	20.5 S	64.1E	90	6	32	53	69	97				-15	-15	0	5	10			
03031312	17	21.8S	64.5E	85	12	30	51	73	127				-10	0	0	5	10			
03031400	18	23.2 S	64.9E	65	28	53	55	111	130				0	0	5	10	10			
03031412	19	24.8S	65.2E	55	16	32	92	104					-5	0	5	5				
03031500	20	26.5 S	65.6E	40	30	60	13						0	5	5					
03031512	21	28.7 S	66.2E	30	0	36							0	0						
03031518		29.6 S	66.4E	25																
03031600		30.4 S	66.7E	25																

			AVERAGE		9	28	41	62	100				4	8	12	19	24			
			BIAS										-1	-1	-1	-2	-3			
			\# CASES		23	23	22	21	20				23	23	22	21	20			

Figure 2-23S-1. 080117 Z March 2003 multi-sensor satellite images of TC 23S (Kalunde), The eye is 400 nm south-southwest of Diego Garcia, with a maximum intensity of 140 knots.

Figure 2-23S-2. 080600Z March 2003 met-5 visible image of TC 23S (Kalunde), The eye is 380 nm south-southwest of Diego Garcia, with a maximum intensity of 140 knots.

Figure 2-23S-3. 090535Z March 2003 MODIS true-color image of TC 23S (Kalunde), located 670 nm east-northeast of Mauritius, with an intensity of 120 knots.

TROPICAL CYCLONE 23S (KALUNDE)
 05-15 MAR 2003

Time Intensity for 23 S
Intensity (kts)

Tropical Cyclone (TC) 23S (Kalunde)*

First Poor : 1800Z 03 Mar 03
First Fair : 0330Z 04 Mar 03

First TCFA : $2130 Z 04$ Mar 03
First Warning : 0600Z 05 Mar 03

Last Warning : 1200Z 15 Mar 03, Extratropical
Max Intensity : 140 kts, gusts to 170 kts

Landfall : None
Total Warnings: 21 plus 2 Amended Warnings
Remarks:
(1) Tropical Cyclone (TC) 23S developed approximately 445 nm southeast of Diego Garcia around 03 March 2003. The cyclone remained quasi-stationary for 48 hours then began to track southwestward toward a weakness in the mid-level subtropical ridge. As it tracked it intensfied, developed and eye, then rapidly intensified to 140 knots in a favorable upper level environment, with excellent outflow aloft and very weak vertical wind shear. TC 23S then began to track southwestward and weaken over the next 48 hours as the eye dissipated and the cyclone lost some outflow. Afterwards, the cyclone tracked poleward, rapidly weakened and transitioned into an extratropical system.
(2) No damage was reported for this system.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030318		10.7S	78.4E	15																
03030400		10.9S	78.5E	15																
03030406		11.2S	78.6E	25																
03030412		11.5S	78.7E	25																
03030418		11.5 S	78.4E	30																
03030500		11.5S	78.0E	35																
03030506	1	11.3S	77.5E	30	8	31	34	8	50				5	5	10	10	0			
03030518	2	10.9S	76.7E	40	11	40	35	12	48				0	5	5	-5	-25			
03030600	2A	11.15	76.5E	40	37	62	116	178	245				0	-5	-5	-30	-50			
03030606	3	11.2S	76.2E	45	8	19	59	124	192				0	0	-10	-30	-60			
03030618	4	11.8 S	75.0E	55	0	13	34	71	99				-5	-10	-30	-55	-40			
03030706	5	12.5S	73.6E	75	8	29	47	52	52				5	-15	-40	-25	-10			
03030718	6	13.4 S	72.0E	105	8	47	59	37	76				10	-15	0	15	25			
03030800	6A	13.7S	71.2E	130	8	29	8	25	152				10	15	30	40	45			
03030812	7	14.4 S	69.7E	130	0	12	8	12	24				10	30	30	25	40			
03030900	8	15.3S	68.8E	120	5	33	58	73	122				0	5	0	15	10			
03030912	9	16.1S	67.9E	115	0	8	25	21	47				0	-5	0	-5	-10			
03031000	10	16.7S	67.1E	115	0	13	18	54	112				-15	-10	-15	-20	-30			
03031012	11	17.4S	66.4E	100	6	17	24	46	72				-5	-10	-15	-25	-30			
03031100	12	17.9S	65.6E	100	0	25	39	44	51				0	-5	-15	-25	-20			
03031112	13	18.4S	64.9E	100	0	6	8	29	75				0	-5	-10	5	5			
03031200	14	18.8S	64.3E	105	0	6	41	84	115				0	-5	10	10	25			
03031212	15	19.5S	63.9E	105	8	13	36	69	115				0	10	15	30	30			
03031300	16	20.5S	64.1E	90	6	32	53	69	97				-15	-15	0	5	10			
03031312	17	21.8 S	64.5E	85	12	30	51	73	127				-10	0	0	5	10			
03031400	18	23.2 S	64.9E	65	28	53	55	111	130				0	0	5	10	10			
03031412	19	24.8 S	65.2E	55	16	32	92	104					-5	0	5	5				
03031500	20	26.5S	65.6E	40	30	60	13						0	5	5					
03031512	21	28.7S	66.2E	30	0	36							0	0						
03031518		29.6 S	66.4E	25																
03031600		30.4S	66.7E	25																
			AVERAGE		9	28	41	62	100				4	8	12	19	24			
			BIAS										-1	-1	-1	-2	-3			
			\# CASES		23	23	22	21	20				23	23	22	21	20			

Figure 2-23S-1. $080117 Z$ March 2003 multi-sensor satellite images of TC 23S (Kalunde), The eye is 400 nm south-southwest of Diego Garcia, with a maximum intensity of 140 knots.

Figure 2-23S-2. 080600Z March 2003 met-5 visible image of TC 23S (Kalunde), The eye is 380 nm south-southwest of Diego Garcia, with a maximum intensity of 140 knots.

Figure 2-23S-3. 090535Z March 2003 MODIS true-color image of TC 23S (Kalunde), located 670 nm east-northeast of Mauritius, with an intensity of 120 knots.

TROPICAL CYCLONE 23S (KALUNDE)

05-15 MAR 2003

Time Intensity for 23S

Tropical Cyclone (TC) 24S (Craig)*

First Poor : N/A

First Fair : 0300Z 08 Mar 03
First TCFA : $1000 Z 08$ Mar 03
First Warning : 1800Z 08 Mar 03
Last Warning : $1800 Z 12$ Mar 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : Multiple Events (see below)
Total Warnings : 9
Remarks:
(1) Tropical Cyclone (TC) 24S developed approximately 100 nm northwest of Darwin, Australia on 08 March, 2003 in a near equatorial trough. The cyclone initially drifted northward, then eastward, increasing speed as it tracked across northern Arnhem Land and intensified to 35 knots. TC 24S maintained 35 knots as it tracked into the Gulf of Carpentaria and then dissipated after moving onto the Cape York Peninsula.
(2) Reports indicated damage from storm-force winds and fallen trees.
*Named by WMO designated RSMC

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030800		12.0 S	129.0E	20																
03030806		11.8S	128.8E	25																
03030812		11.5 S	128.8E	25																
03030818	1	11.2 S	128.8E	25	5	45	78	93	88				0	5	5	5	10			
03030906	2	10.6 S	129.6E	25	13	36	77	130	129				5	5	5	10	15			
03030918	3	10.8S	130.5E	30	25	69	116	118	47				0	0	5	10	15			
03031006	4	11.1S	131.0E	35	13	34	19	108	284				0	0	0	-5	-5			
03031018	5	11.6S	131.5E	35	18	35	155	331	443				0	0	0	-5	0			
03031106	6	11.9 S	132.8E	35	5	101	263	309					0	-5	-10	-5				
03031118	7	12.6 S	135.8E	35	58	197	279						0	0	5					
03031206	8	14.15	139.8E	35	21	90							0	0						
03031218	9	16.4S	142.2E	30	13								0							
03031300		17.8S	142.6E	25																
			AVERAGE		19	76	141	182	198				1	2	4	7	9			
			BIAS										1	1	1	2	7			
			\# CASES		9	8	7	6	5					8		6	5			

Figure 2-24S-1. 110231Z March 2003 GMS-5 infrared image of TC 24S (Craig), 100 nm northeast of Darwin, Australia, prior to landfall, with a maximum intensity of 40 knots.

TROPICAL CYCLONE 24S (CRAIG)
08-12 MAR 2003

Time Intensity for 24 S

Intensity (kts)

Tropical Cyclone (TC) 24S (Craig)*

\square
First Poor : N/A

First Fair : 0300Z 08 Mar 03
First TCFA : $1000 Z 08$ Mar 03

First Warning : 1800Z 08 Mar 03
Last Warning : 1800Z 12 Mar 03, Dissipated
Max Intensity : 35 kts, gusts to 45 kts
Landfall : Multiple Events (see below)
Total Warnings : 9
Remarks:
(1) Tropical Cyclone (TC) 24S developed approximately 100 nm northwest of Darwin, Australia on 08 March, 2003 in a near equatorial trough. The cyclone initially drifted northward, then eastward, increasing speed as it tracked across northern Arnhem Land and intensified to 35 knots. TC 24S maintained 35 knots as it tracked into the Gulf of Carpentaria and then dissipated after moving onto the Cape York Peninsula.
(2) Reports indicated damage from storm-force winds and fallen trees.
*Named by WMO designated RSMC

Statistics for JTWC on TC24S

	WRN	BEST TRACK		wind	POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG		00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030800		12.0S	129.0E	20																
03030806		11.8S	128.8E	25																
03030812		11.5S	128.8E	25																
03030818	1	11.2S	128.8E	25	5	45	78	93	88				0	5	5	5	10			
03030906	2	10.6S	129.6E	25	13	36	77	130	129				5	5	5	10	15			
03030918	3	10.8S	130.5E	30	25	69	116	118	47				0	0	5	10	15			
03031006	4	11.1S	131.0E	35	13	34	19	108	284				0	0	0	-5	-5			
03031018	5	11.6S	131.5E	35	18	35	155	331	443				0	0	0	-5	0			
03031106	6	11.9S	132.8E	35	5	101	263	309					0	-5	-10	-5				
03031118	7	12.6S	135.8E	35	58	197	279						0	0	5					
03031206	8	14.1S	139.8E	35	21	90							0	0						
03031218	9	16.4S	142.2E	30	13								0							
03031300		17.8S	142.6E	25																
			AVERAGE		19	76	141	182	198				1	2	4	7	9			
			BIAS										1	1	1	2	7			
			\# CASES		9	8	7	6	5				9	8	7	6	5			

Figure 2-24S-1. $110231 Z$ March 2003 GMS-5 infrared image of TC 24S (Craig), 100 nm northeast of Darwin, Australia, prior to landfall, with a maximum intensity of 40 knots.

TROPICAL CYCLONE 24S (CRAIG)
08-12 MAR 2003

Time Intensity for 24 S
Intensity (kts)

Tropical Cyclone (TC) 25P (Eseta)*

First Poor : 0100Z 09 Mar 03

First Fair : 0600Z 09 Mar 03
First TCFA : 0030Z 10 Mar 03
First Warning : $1200 Z 10$ Mar 03
Last Warning : 0000 Z 14 Mar 03, Extratropical
Max Intensity : 110 kts, gusts to 135 kts
Landfall : None

Total Warnings : 8
Remarks:
(1) Tropical Cyclone (TC) 25P was initially described as a tropical disturbance in the North Fiji Basin on 10 March, 2003. Approximately 12 hours later JTWC issued the first warning on this cyclone. The system was intensifying at a less than climatological rate and moving south along the western periphery low to mid tropospheric subtropical ridge.

Approximately 36 hours after the initial warning the cyclone began to move east-southeast just south of Fiji, in response to steering flow associated with a mid level ridge to the east-northeast of the cyclone. By 13 March at 1200Z, TC 25P attained maximum intensity of 110 kts due to increased diffluence aloft and then began to track east-southeastward. Rapid weakening occured as TC 25P underwent extratropical transition as a result of the interaction with a developing midlatitude low north of New Zealand.
(2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

Statistics for JTWC on TC25P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030818		14.0 S	171.6E	15																
03030900		13.9S	171.9E	15																
03030906		14.1S	172.1E	25																
03030912		14.3S	172.3E	25																
03030918		14.6S	172.5E	25																
03031000		15.1S	172.6E	25																
03031006		15.6S	172.5E	25																
03031012	,	16.2S	172.4E	35	13	83	133	228	284				-5	-10	-15	-20	-20			
03031100	2	18.05	172.2E	45	6	42	115	205	349				0	-5	-10	-10	-35			
03031112	3	19.6S	173.2E	55	16	66	121	173	265				0	-10	-20	-50	-65			
03031200	4	21.4S	175.0E	65	8	29	73	144	303				0	0	-35	-55	-15			
03031212	5	21.8S	178.1E	70	11	29	97						0	-35	-50					
03031300	6	21.95	177.8W	100	0	58	182	371					0	-20	5	20				
03031312	7	22.9 S	172.5W	110	0	50	120						0	25	35					
03031400	8	25.3 S	165.6W	65	97	217							-5	0						
03031406		27.5S	161.1W	55																
03031412		30.5S	156.9W	45																
			AVERAGE		19	72	120	224	300				1	13	24	31	34			
			BIAS										-1	-7	-13	-23	-34			
			\# CASES		8	8	7	5	4				8	8	7	5	4			

Figure 2-25P-1. 120215Z March 2003 MODIS true-color image of TC 25P (Eseta), located 250 nm southwest of the Fiji Islands, with an intensity of 65 knots.

Figure 2-25P-2. $130133 Z$ March 2003 GOES-10 visible imagery of TC 25P (Eseta), 378 nm southeast of Suva, Fiji, with an increasing intensity of 100 knots.

Figure 2-25P-3. $131708 Z$ March 200385 GHz SSM/I imagery of TC 25P (Eseta), 340 nm southeast of Suva, Fiji, with an increasing intensity of 80 knots.

TROPICAL CYCLONE 25P (ESETA)

10-14 MAR 2003

Time Intensity for 25P
Intensity (kts)

Tropical Cyclone (TC) 25P (Eseta)*

First Poor : 0100Z 09 Mar 03

First Fair : 0600Z 09 Mar 03
First TCFA : 0030Z 10 Mar 03

First Warning : 1200Z 10 Mar 03
Last Warning : 0000Z 14 Mar 03, Extratropical
Max Intensity : 110 kts, gusts to 135 kts
Landfall : None

Total Warnings : 8
Remarks:
(1) Tropical Cyclone (TC) 25P was initially described as a tropical disturbance in the North Fiji Basin on 10 March, 2003. Approximately 12 hours later JTWC issued the first warning on this cyclone. The system was intensifying at a less than climatological rate and moving south along the western periphery low to mid tropospheric subtropical ridge.

Approximately 36 hours after the initial warning the cyclone began to move east-southeast just south of Fiji, in response to steering flow associated with a mid level ridge to the east-northeast of the cyclone. By 13 March at 1200Z, TC 25P attained maximum intensity of 110 kts due to increased diffluence aloft and then began to track east-southeastward. Rapid weakening occured as TC 25P underwent extratropical transition as a result of the interaction with a developing midlatitude low north of New Zealand.
(2) Available reports indicate no casualties or damage were associated with this cyclone.
*Named by WMO designated RSMC

Statistics for JTWC on TC25P																				
	WRN	BEST	TRACK			SITIO	ON E	RRO	RS					ND	ERR	ORS				
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03030818		14.0S	171.6E	15																
03030900		13.9S	171.9E	15																
03030906		14.1S	172.1E	25																
03030912		14.3 S	172.3E	25																
03030918		14.6S	172.5E	25																
03031000		15.15	172.6E	25																
03031006		15.6S	172.5E	25																
03031012	1	16.2 S	172.4E	35	13	83	133	228	284				-5	-10	-15	-20	-20			
03031100	2	18.0S	172.2E	45	6	42	115	205	349				0	-5	-10	-10	-35			
03031112	3	19.6S	173.2E	55	16	66	121	173	265				0	-10	-20	-50	-65			
03031200	4	21.4 S	175.0E	65	8	29	73	144	303				0	0	-35	-55	-15			
03031212	5	21.8 S	178.1E	70	11	29	97						0	-35	-50					
03031300	6	21.9S	177.8W	100	0	58	182	371					0	-20	5	20				
03031312	7	22.9 S	172.5W	110	0	50	120						0	25	35					
03031400	8	25.3 S	165.6W	65	97	217							-5	0						
03031406		27.5S	161.1W	55																
03031412		30.5S	156.9W	45																
			AVERAGE		19	72	120	224	300				1	13	24	31	34			
			BIAS										-1	-7	-13	-23	-34			
			\# CASES		8	8	7	5	4				8	8	7	5	4			

Figure 2-25P-1. 120215Z March 2003 MODIS true-color image of TC 25P (Eseta), located 250 nm southwest of the Fiji Islands, with an intensity of 65 knots.

Figure 2-25P-2. $130133 Z$ March 2003 GOES-10 visible imagery of TC 25P (Eseta), 378 nm southeast of Suva, Fiji, with an increasing intensity of 100 knots.

Figure 2-25P-3. $131708 Z$ March 200385 GHz SSM/I imagery of TC 25P (Eseta), 340 nm southeast of Suva, Fiji, with an increasing intensity of 80 knots.

TROPICAL CYCLONE 25P (ESETA)

10-14 MAR 2003

Time Intensity for 25P
Intensity (kts)

Tropical Cyclone (TC) 26S (Inigo)*

First Poor : 0230Z 29 Mar

First Fair : 1400Z 30 Mar 03
First TCFA : $1400 Z 31$ Mar 03
First Warning : 1200Z 01 Apr 03

Last Warning : 1200Z 08 Apr 03, Dissipated
Max Intensity : 140 kts, gusts to 170 kts
Landfall : Near Port Hedland, Australia
Total Warnings : 23
Remarks:
(1) Tropical Cyclone (TC) 26S was initially a very poorly organized surface circulation with cycling convection in the Banda Sea, off the northeast coast of Timor. As it slowly tracked westward over East Timor into the Suva Sea, it became more organized. JTWC issued the first warning on 01 April as the system showed signs of developing banding features in the satellite imagery. Throughout its developing stage, TC 26S was equatorward of the upper level ridge axis which hampered intensification.

On 06 April, under the steering influence of the subtropical ridge to the east, TC 26S turned poleward and tracked underneath the 200 mb ridge axis. In less than 24 hours following that event, TC 26S explosively intensified from a 75 knot system to a maximum intensity of 140 knots. On 08 April, TC 26S passed approximately 150 Nm northeast of Learmonth, Australia and made landfall approximately 135 mm west-southwest of Port Hedland, Australia.
(2) TC 26S dissipated soon after landfall. Minimal damage was reported with this system due to the sparse population near the landfall location.
*Named by WMO designated RSMC

Statistics for JTWC on TC26S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03032906		7.0 S	130.6E	15																
03032912		7.1S	129.9E	15																
03032918		7.35	129.2E	15																
03033000		7.6S	128.5E	20																
03033006		7.95	127.8E	25																
03033012		8.25	126.9E	25																
03033018		8.5S	126.0E	25																
03033100		8.85	124.9E	25																
03033106		9.05	123.8E	30																
03033112		9.45	122.7E	30																
03033118		9.5 S	121.9E	30																
03040100		9.45	121.2E	30																
03040106		9.75	120.7E	30																
03040112	1	10.1S	120.3E	35	6	34	72	103	103				0	0	0	-10	-35			
03040200	2	10.8S	119.3E	45	8	37	101	112	94				0	0	-10	-35	-55			
03040212	3	11.4S	118.5E	55	5	35	54	74	65				0	-5	-30	-50	-40			
03040300	4	11.7S	117.9E	75	16	34	43	65	81				5	-10	-30	-35	-30			
03040312	5	12.1S	116.9E	110	0	12	26	30	33				5	-5	-5	0	0			
03040400	6	12.6S	115.8E	140	8	21	21	24	21	29			0	0	10	10	25	55		
03040412	7	13.5S	114.6E	140	6	18	38	62	85	77			0	10	10	25	25	50		
03040518	8*	14.0S	113.9E	140																
03040500	9	14.3S	113.6E	130	0	18	36	44	64	137			5	5	15	20	25	5		
03040506	10	14.5S	113.2E	125	0	12	21	31	50	133			0	0	5	15	15	5		
03040512	11	14.7S	113.0E	125	5	12	21	54	54	106			-5	0	5	20	20	15		
03040518	12	14.9S	112.8E	115	8	8	6	21	31	65			-5	-5	10	15	10	5		
03040600	13	15.1S	112.7E	105	8	12	8	39	49				-5	-5	0	5	0			

Figure 2-26S-1. 020555Z April 2003 MODIS true-color image of TC 26S (Inigo), located 440nm west-northwest of Port Warrender, Australia, with an intensity of 45 knots as it began a phase of rapid intensification.

Figure 2-26S-2. $041531 Z$ April 2003 color composite TRMM image of TC 26S (Inigo), 495 nm north of Learmonth, Australia, with a peak intensity of 140 knots.

Figure 2-26S-3. 041531Z April 2003 enhanced infrared imagery of TC 26S (Inigo), 495 nm north of Learmonth, Australia, with a peak intensity of 140 knots.

TROPICAL CYCLONE 26P (INIGO)
 01-08 APR 2003

Time Intensity for 26 S

Intensity (kts)

Tropical Cyclone (TC) 26S (Inigo)*

First Poor : 0230Z 29 Mar

First Fair : 1400Z 30 Mar 03
First TCFA : 1400Z 31 Mar 03
First Warning : 1200Z 01 Apr 03
Last Warning : 1200Z 08 Apr 03, Dissipated
Max Intensity : 140 kts, gusts to 170 kts
Landfall : Near Port Hedland, Australia
Total Warnings : 23
Remarks:
(1) Tropical Cyclone (TC) 26S was initially a very poorly organized surface circulation with cycling convection in the Banda Sea, off the northeast coast of Timor. As it slowly tracked westward over East Timor into the Suva Sea, it became more organized. JTWC issued the first warning on 01 April as the system showed signs of developing banding features in the satellite imagery.
Throughout its developing stage, TC 26S was equatorward of the upper level ridge axis which hampered intensification.

On 06 April, under the steering influence of the subtropical ridge to the east, TC 26S turned poleward and tracked underneath the 200mb ridge axis. In less than 24 hours following that event, TC 26S explosively intensified from a 75 knot system to a maximum intensity of 140 knots. On 08 April, TC 26 S passed approximately 150 Nm northeast of Learmonth, Australia and made landfall approximately 135 mm west-southwest of Port Hedland, Australia.
(2) TC 26S dissipated soon after landfall. Minimal damage was reported with this system due to the sparse population near the landfall location.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03032906		7.0 S	130.6E	15																
03032912		7.1S	129.9E	15																
03032918		7.35	129.2E	15																
03033000		7.6S	128.5E	20																
03033006		7.95	127.8E	25																
03033012		8.25	126.9E	25																
03033018		8.5S	126.0E	25																
03033100		8.85	124.9E	25																
03033106		9.0 S	123.8E	30																
03033112		9.4S	122.7E	30																
03033118		9.5 S	121.9E	30																
03040100		9.45	121.2E	30																
03040106		9.75	120.7E	30																
03040112	1	10.1S	120.3E	35	6	34	72	103	103				0	0	0	-10	-35			
03040200	2	10.8S	119.3E	45	8	37	101	112	94				0	0	-10	-35	-55			
03040212	3	11.4 S	118.5E	55	5	35	54	74	65				0	-5	-30	-50	-40			
03040300	4	11.7S	117.9E	75	16	34	43	65	81				5	-10	-30	-35	-30			
03040312	5	12.1S	116.9E	110	0	12	26	30	33				5	-5	-5	0	0			
03040400	6	12.6S	115.8E	140	8	21	21	24	21	29			0	0	10	10	25	55		
03040412	7	13.5S	114.6E	140	6	18	38	62	85	77			0	10	10	25	25	50		
03040518	8^{*}	14.0S	113.9E	140																
03040500	9	14.35	113.6E	130	0	18	36	44	64	137			5	5	15	20	25	5		
03040506	10	14.5S	113.2E	125	0	12	21	31	50	133			0	0	5	15	15	5		
03040512	11	14.7S	113.0E	125	5	12	21	54	54	106			-5	0	5	20	20	15		
03040518	12	14.95	112.8 E	115	8	8	6	21	31	65			-5	-5	10	15	10	5		
03040600	13	15.1S	112.7E	105	8	12	8	39	49				-5	-5	0	5	0			
03040606	14	15.4S	112.7E	100	5	51	91	104	34				0	5	5	5	5			
03040612	15	15.8 S	112.8E	90	11	42	38	58	102				0	5			10			
03040618	16	16.4S	113.0E	80	5	6	42	102	127				0	0	-5	-5	-5			
03040700	17	17.0S	113.3E	70	0	25	69	83					0	5	0	10				
03040706	18	17.6S	113.9E	65	8	21	98	133					0	-5	-10	-5				
03040712	19	18.3S	114.8E	55	0	62	84						5	-5	0					
03040718	20	19.0S	115.1E	55	29	72	101						0	0	0					
03040800	21	19.9S	115.5E	50	17	129							0	10						
03040806	22	20.9S	116.2E	40	8	73							0	5						
03040812	23	21.9S	117.7E	25	5								0							
03040818		23.4S	118.2E	25																
			AVERAGE		8	35	51	67	66	91			2	4	8	16	20	23		
			BIAS										0	0	-1	-1	-2	23		
			\# CASES		22	21	19	17	15	6			22	21	19	17	15	6		

[^5]

Figure 2-26S-1. 020555Z April 2003 MODIS true-color image of TC 26S (Inigo), located 440nm west-northwest of Port Warrender, Australia, with an intensity of 45 knots as it began a phase of rapid intensification.

Figure 2-26S-2. $041531 Z$ April 2003 color composite TRMM image of TC 26S (Inigo), 495 nm north of Learmonth, Australia, with a peak intensity of 140 knots.

Figure 2-26S-3. 041531Z April 2003 enhanced infrared imagery of TC 26S (Inigo), 495 nm north of Learmonth, Australia, with a peak intensity of 140 knots.

01-08 APR 2003

Time Intensity for 26S
Intensity (kts)

Tropical Cyclone (TC) 27P (Fili)*

First Poor : 0230Z 12 Apr 03
First Fair : 1630Z 13 Apr 03
First TCFA : $2330 Z 13$ Apr 03
First Warning : 0600Z 14 Apr 03
Last Warning : 0600Z 14 Apr 03, Extratropical
Max Intensity : 45 kts, gusts to 55 kts
Landfall : None
Total Warnings : 1
Remarks: None
*Named by WMO designated RSMC

Statistics for JTWC on TC27P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03041300		13.5S	179.6W	20																
03041306		13.8S	179.3W	25																
03041312		14.2 S	178.9W	25																
03041318		14.6S	178.2W	30																

03041400		15.3S	177.0W	30																	
03041406	1	16.0S	175.7W	35	18	80	246						0		15	30					
03041412		17.6S	174.0W	35																	
03041418		20.2S	172.2W	40																	
03041500		24.4S	170.6W	45																	
03041506		29.3S	169.7W	35																	
			AVERAGE		18	80	246						0		15	30					
			BIAS										0		15	30					
			\# CASES		1	1	1						1	1	1	1					

Figure 2-27P-1. 140531Z April 2003 enhanced infrared satellite image of TC 27P (Fili), 625 nm southeast of Suva, Fiji, with an intensity of 35 knots.

Figure 2-27P-2. 141910Z April 2003 multi-sensor satellite images of TC 27P (Fili), 575 nm southeast of Suva, Fiji, with an intensity of 35 knots.

TROPICAL CYCLONE 27P (FLI)
 14 APR 2003

Time Intensity for 27P

Intensity (kts)

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

Fix Date (Zulu)

Tropical Cyclone (TC) 27P (Fili)*

First Poor : 0230Z 12 Apr 03
First Fair : 1630Z 13 Apr 03
First TCFA : 2330Z 13 Apr 03
First Warning : 0600Z 14 Apr 03
Last Warning : 0600Z 14 Apr 03, Extratropical
Max Intensity : 45 kts, gusts to 55 kts
Landfall : None
Total Warnings : 1
Remarks: None
*Named by WMO designated RSMC

Statistics for JTWC on TC27P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03041300		13.5S	179.6W	20																
03041306		13.8S	179.3W	25																
03041312		14.2S	178.9W	25																
03041318		14.6S	178.2W	30																
03041400		15.3S	177.0W	30																
03041406	1	16.0S	175.7W	35	18	80	246						0	15	30					
03041412		17.6S	174.0W	35																

03041418	$20.2 S$	172.2 W	40																	
03041500	24.4 S	170.6 W	45																	
03041506	$29.3 S$	169.7 W	35																	
			AVERAGE		18	80	246						0	15	30					
			BIAS										0	15	30					
			\# CASES		1	1	1						1	1	1					

Figure 2-27P-1. 140531Z April 2003 enhanced infrared satellite image of TC 27P (Fili), 625 nm southeast of Suva, Fiji, with an intensity of 35 knots.

Figure 2-27P-2. 141910Z April 2003 multi-sensor satellite images of TC 27P (Fili), 575 nm southeast of Suva, Fiji, with an intensity of 35 knots.

TROPICAL CYCLONE 27 P (FLI)
14 APR 2003

Time Intensity for 27P

Tropical Cyclone (TC) 28S (Manou)*

First Poor : 1800Z 28 Apr 03
First Fair : 1400Z 01 May 03
First TCFA : 0400Z 03 May 03
First Warning : 1200Z 03 May 03
Last Warning : $1800 Z 10$ May 03, Dissipated
Max Intensity : 75 kts, gusts to 90 kts
Landfall : None

Total Warnings : 15 plus 1 Amended Warning
Remarks:
(1) Tropical cyclone (TC) 28 S developed approximately 240 nm southwest of Diego Garcia on 28 April, 2003 and cyclone intensified slowly during the first 48 hours after the initial warning. It peaked at 45 knots, then weakened to 35 knots around 0000 Z on 06 May. TC 28 S then slowly tracked southwestward, toward Madagascar, and reached a maximum intensity of 75 knots and maintained this intensity for 24 hours as it approached the mountainous coastline. It slowed drastically as it approached Madagascar and then turned poleward.

While it did not make landfall, TC 28S spent more than 12 hours within a few miles of the coast of Madagascar as it moved slowly southward along the coast at intensities from 65 to 75 knots. TC 28S finally dissipated over open water and the last warning was issued at 1800 Z on 10 May, 2003.
(2) Reports indicated that there were70 fatalities, 19 persons were missing, and 85 were injured. Further reports indicated 24,500 homes were destroyed, leaving 47,500 people homeless, with damage to infrastructure on Madagascar as a result of this cyclone.
*Named by WMO designated RSMC

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03050200		11.0 S	65.7E	25																
03050206		11.1S	65.3E	25																
03050212		11.3 S	65.0E	25																
03050218		11.6 S	64.7E	25																
03050300		12.1S	64.4E	25																
03050306		12.8 S	64.0E	30																
03050312	1	13.7S	63.4E	35	25	61	55	74	108				0	0	15	30	45			
03050400	2	15.0 S	61.8E	45	25	63	111	127	156				5	15	25	40	60			
03050412	3	15.6 S	60.7E	45	0	26	55	73	129				0	10	25	40	50			
03050500	4	16.1S	59.4E	45	335	50	82	95	137				0	15	30	35	40			
03050512	5	16.2 S	58.1E	40	17	32	69	123	174				0	5	0	0	-10			
03050600	6	16.8S	56.9E	35	0	21	48	85	118				0	0	0	-10	-20			
03050612	7	17.5S	55.2E	35	18	55							-5	-10						
03050618	7A	17.9 S	54.3E	35	5	27	60	92	103				5	-5	-20	-30	-40			
03050706	8	18.3 S	52.6E	45	11	21	38	28	94				0	-5	-15	-35	-50			
03050718	9	18.7S	51.2E	55	5	34	23	8	54				0	-5	-20	-25	-25			
03050806	10	19.1S	49.8E	65	5	49	82	81	66				0	0	-30	-5	20			
03050818	11	19.3S	49.2E	75	0	34	72	93	123				0	-15	-10	20	35			
03050906	12	19.5S	49.0E	75	0	13	13	90					0	10	35	45				
03050918	13	20.0S	48.9E	60	5	31	102						-5	0	20					
03051006	14	21.0 S	48.9E	40	12	23							0	5						
03051018	15	22.9 S	48.9E	30	26								0							
			AVERAGE		12	36	62	81	115				1	7	19	26	36			
			BIAS										0	1	4	9	10			
			\# CASES		16	15	13	12	11				16	15	13	12	11			

Figure 2-28S-1. $071753 Z$ May 2003 multi-sensor satellite images of TC 28S (Manou), located off the east coast of Madagascar, with a maximum intensity of 75 knots.

Figure 2-28S-2. 081020Z May 2003 MODIS true-color image of TC 28S (Manou), located off the coast of Madagascar, with a maximum intensity of 75 knots.

TROPICAL CYCLONE 28S (MANOU)
 03-10 MAY 2003

Time Intensity for 28 S
Intensity (kts)

Tropical Cyclone (TC) 28S (Manou)*

First Poor : 1800Z 28 Apr 03
First Fair : 1400Z 01 May 03
First TCFA : 0400Z 03 May 03
First Warning : 1200Z 03 May 03
Last Warning : $1800 Z 10$ May 03, Dissipated
Max Intensity : 75 kts, gusts to 90 kts
Landfall : None
Total Warnings: 15 plus 1 Amended Warning
Remarks:
(1) Tropical cyclone (TC) 28S developed approximately 240 nm southwest of Diego Garcia on 28 April, 2003 and cyclone intensified slowly during the first 48 hours after the initial warning. It peaked at 45 knots, then weakened to 35 knots around 0000Z on 06 May. TC 28S then slowly tracked southwestward, toward Madagascar, and reached a maximum intensity of 75 knots and maintained this intensity for 24 hours as it approached the mountainous coastline. It slowed drastically as it approached Madagascar and then turned poleward.

While it did not make landfall, TC 28S spent more than 12 hours within a few miles of the coast of Madagascar as it moved slowly southward along the coast at intensities from 65 to 75 knots. TC $28 S$ finally dissipated over open water and the last warning was issued at 1800 Z on 10 May, 2003.
(2) Reports indicated that there were 70 fatalities, 19 persons were missing, and 85 were injured. Further reports indicated 24,500 homes were destroyed, leaving 47,500 people homeless, with damage to infrastructure on Madagascar as a result of this cyclone.
*Named by WMO designated RSMC

Statistics for JTWC on TC28S

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03050200		11.0S	65.7E	25																
03050206		11.1S	65.3E	25																
03050212		11.35	65.0E	25																
03050218		11.6S	64.7E	25																
03050300		12.1S	64.4E	25																
03050306		12.8S	64.0E	30																
03050312	1	13.7S	63.4E	35	25	61	55	74	108				0	0	15	30	45			
03050400	2	15.0S	61.8E	45	25	63	111	127	156				5	15	25	40	60			
03050412	3	15.6S	60.7E	45	0	26	55	73	129				0	10	25	40	50			
03050500	4	16.1S	59.4E	45	33	50	82	95	137				0	15	30	35	40			
03050512	5	16.2S	58.1E	40	17	32	69	123	174				0	5	0	0	-10			
03050600	6	16.8S	56.9E	35	0	21	48	85	118				0	0	0	-10	-20			
03050612	7	17.5S	55.2E	35	18	55							-5	-10						
03050618	7A	17.9S	54.3E	35	5	27	60	92	103				5	-5	-20	-30	-40			
03050706	8	18.3 S	52.6E	45	11	21	38	28	94				0	-5	-15	-35	-50			
03050718	9	18.7S	51.2E	55	5	34	23	8	54				0	-5	-20	-25	-25			
03050806	10	19.1S	49.8E	65	5	49	82	81	66				0	0	-30	-5	20			
03050818	11	19.35	49.2E	75	0	34	72	93	123				0	-15	-10	20	35			
03050906	12	19.5 S	49.0E	75	0	13	13	90					0	10	35	45				
03050918	13	20.0S	48.9E	60	5	31	102						-5	0	20					
03051006	14	21.0 S	48.9E	40	12	23							0	5						
03051018	15	22.9S	48.9E	30	26								0							
			AVERAGE		12	36	62	81	115				1	7	19	26	36			
			BIAS										0	1	4	9	10			
			\# CASES		16	15	13	12	11				16	15	13	12	11			

Figure 2-28S-1. $071753 Z$ May 2003 multi-sensor satellite images of TC 28 S (Manou), located off the east coast of Madagascar, with a maximum intensity of 75 knots.

Figure 2-28S-2. $081020 Z$ May 2003 MODIS true-color image of TC 28 (Manou), located off the coast of Madagascar, with a maximum intensity of 75 knots.

TROPICAL CYCLONE 28S (MANOU)
03-10 MAY 2003

Time Intensity for 28 S

Intensity (kts)

[^6]Fix Date (Zulu)

Tropical Cyclone (TC) 29P (Gina)*

First Poor : N/A
First Fair : 2300Z 03 Jun 03
First TCFA : 0200Z 04 Jun 03
First Warning : $1800 Z 04$ Jun 03
Last Warning : 1800Z 08 Jun 03, Extratropical
Max Intensity : 90 kts, gusts to 110 kts
Landfall : None
Total Warnings : 9 plus 1 amended
Remarks:
(1) Tropical Cyclone (TC) 29P was first noted as a tropical disturbance east of the Solomon Islands on 03 June, 2003 and described as a partially exposed low level circulation center associated with rapidly organizing deep convection. A Tropical Cyclone Formation Alert was issued within a few hours based on the rapid organization of the tropical cyclone, with the cyclone gaining warning status by $1800 Z$ on 04 June.

TC 29P tracked southwestward under the influence of a low to mid-level steering ridge to the east for approximately 72 hours after the initial warning. Intensification was near the climatological average for most of this period, reaching a maximum intensity of 90 knots around 1200 z on 07 June. Afterwards, an approaching shortwave trough created a weakness in the ridge, causing a sharp recurvature and extratropical transition.
(2) No reports of damages were received for this system.
*Named by WMO designated RSMC

Statistics for JTWC on TC29P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03060400		10.0S	171.7E	25																
03060406		10.1S	171.1E	30																
03060412		10.3 S	170.5E	30																
03060418	1	10.6 S	169.9E	30	16	32	76	123	152				0	-10	-20	-15	-25			
03060506	2	11.7S	168.8E	45	17	43	95	168	201				0	0	15	5	-5			
03060518	3	13.0 S	167.7E	55	0	33	55	76	100				0	10	10	0	5			
03060606	4	14.4S	166.1E	55	13	53	66	96	58				0	0	-30	-50	-40			
03060618	5	15.3 S	164.0E	65	29	41	71	140	228				0	-25	-45	-35	-20			
03060700	5A	15.7S	163.1E	75	0	33	70	131					-10	0	15	25				
03060712	6	16.8S	162.1E	90	0	24	121						0	0	25					
03060800	7	17.6S	161.9E	90	13	71							0	20						
03060812	8	18.3 S	163.3E	65	0								0							
03060818	9	18.7S	165.0E	55	0								-15							
			AVERAGE		9	41	79	122	148				3	8	23	22	19			
			BIAS										-3	-1	-4	-12	-17			
			\# CASES		10	8	7	6	5				10	8	7	6	5			

Figure 2-28P-1. 062340Z June 2003 MODIS true-color image of TC 29P (Gina), located northwest of New Caledonia, with an intensity of 65 knots.

Figure 2-29P-2. $071849 Z$ June 2003 TRMM color composite image of TC 29P (Gina), located 320 nm west of Vila, with an estimated intensity of 90 knots.

TROPICAL CYCLONE 29S (GINA)
04-08 JUN 2003

Time Intensity for 29P

Intensity (kts)

Tropical Cyclone (TC) 29S (Gina)*

First Poor : N/A

First Fair : 2300Z 03 Jun 03
First TCFA : $0200 Z 04$ Jun 03
First Warning : 1800Z 04 Jun 03
Last Warning : 1800Z 08 Jun 03, Extratropical
Max Intensity : 90 kts, gusts to 110 kts
Landfall : None

Total Warnings : 9 plus 1 amended
Remarks:
(1) Tropical Cyclone (TC) 29P was first noted as a tropical disturbance east of the Solomon Islands on 03 June, 2003 and described as a partially exposed low level circulation center associated with rapidly organizing deep convection. A Tropical Cyclone Formation Alert was issued within a few hours based on the rapid organization of the tropical cyclone, with the cyclone gaining warning status by $1800 Z$ on 04 June.

TC 29P tracked southwestward under the influence of a low to mid-level steering ridge to the east for approximately 72 hours after the initial warning. Intensification was near the climatological average for most of this period, reaching a maximum intensity of 90 knots around 1200 z on 07 June. Afterwards, an approaching shortwave trough created a weakness in the ridge, causing a sharp recurvature and extratropical transition.
(2) No reports of damages were received for this system.
*Named by WMO designated RSMC

Statistics for JTWC on TC29P

	WRN	BEST TRACK			POSITION ERRORS								WIND ERRORS							
DTG	NO.	LAT	LONG	wind	00	12	24	36	48	72	96	120	00	12	24	36	48	72	96	120
03060400		10.0S	171.7E	25																
03060406		10.1S	171.1E	30																
03060412		10.35	170.5E	30																
03060418	1	10.6S	169.9E	30	16	32	76	123	152				0	-10	-20	-15	-25			
03060506	2	11.7S	168.8E	45	17	43	95	168	201				0	0	15	5	-5			
03060518	3	13.0S	167.7E	55	0	33	55	76	100				0	10	10	0	5			
03060606	4	14.4 S	166.1E	55	13	53	66	96	58				0	0	-30	-50	-40			
03060618	5	15.3S	164.0E	65	29	41	71	140	228				0	-25	-45	-35	-20			
03060700	5A	15.7S	163.1E	75	0	33	70	131					-10	0	15	25				
03060712	6	16.8S	162.1E	90	0	24	121						0	0	25					
03060800	7	17.6S	161.9E	90	13	71							0	20						
03060812	8	18.3 S	163.3E	65	0								0							
03060818	9	18.7S	165.0E	55	0								-15							
			AVERAGE		9	41	79	122	148				3	8	23	22	19			
			BIAS										-3	-1	-4	-12	-17			
			\# CASES		10	8	7	6	5				10	8	7	6	5			

Figure 2-28P-1. $062340 Z$ June 2003 MODIS true-color image of TC 29P (Gina), located northwest of New Caledonia, with an intensity of 65 knots.

Figure 2-29P-2. $071849 Z$ June 2003 TRMM color composite image of TC 29P (Gina), located 320 nm west of Vila, with an estimated intensity of 90 knots.

TROPICAL CYCLONE 29S (GINA)

04-08 JUN 2003

Time Intensity for 29P

3. TROPICAL CYCLONE FIX DATA

3.1 2003 SEASON

Tables 3-1 to 3-3 list the number of tropical cyclone center "fixes", or locations, made using satellite (visible, infrared, and microwave), scatterometer, radar, and synoptic data. Fixes made by the DOD tropical cyclone reconnaissance network sites are included in the tables as well as those fixes received from other sources (e.g., Japanese Meteorological Agency, Australian Bureau of Meteorology, and U.S. National Weather Service National Environmental Satellite Data and Information Service).

TABLE 3-1SOUTH PACIFIC \& SOUTH INDIAN OCEAN FIX SUMMARY FOR 2003						
Tropical Cyclone		Satellite	Scatt	Radar	Synoptic	Total
TC 01S		51	0	0	0	51
TC 02S	Atang	180	3	0	0	183
TC 03S	Boura	214	8	0	0	222
TC 04P	Yolande	68	3	0	1	72
TC 05S	Crystal	179	6	0	0	185
TC 06P	Zoe	219	7	0	0	226
TC 07S	-	109	8	0	0	117
TC 08S	Delfina	119	1	0	0	120
TC 09S	Ebula	141	5	0	0	146
TC 10P	Ami	131	1	1	0	133
TC 11S	Fari	204	4	0	0	208

TC 12P	Beni	267	8	0	0	275
TC 13P	Cilla	110	5	0	0	115
TC 14S	Fiona	234	5	1	0	240
TC 15P	Dovi	203	7	0	0	210
TC 16S	Gerry	167	8	0	0	175
TC 17S	Hape	139	2	0	0	141
TC 18S	Isha	169	3	0	0	172
TC 19S	Japhet	184	0	0	0	184
TC 20S	Graham	56	2	0	2	60
TC 21S	Harriet	170	9	0	0	179
TC 22P	Erica	223	6	0	0	229
TC 23S	Kalunde	291	7	0	0	298
TC 24S	Craig	91	1	0	1	93
TC 25P	Eseta	121	2	0	0	123
TC 26S	Inigo	238	3	0	1	242
TC 27P	Fili	54	0	0	0	54
TC 28S	Manou	234	6	0	0	240
TC 29P	Gina	169	5	0	0	174
	Totals	4735	125	2	5	4867
Percentage		97.3	2.6	0.04	0.1	100
of Total				0		

WESTERN NORTH PACIFIC OCEAN FIX SUMMARY FOR 2003							
	Satellite	Scatt	Radar	Synoptic	Total		
Tropical Cyclone							
TS 01W	Yanyan	213	3	12	0	228	
TY 02W	Kujira	591	15	11	3	620	
TD 03W	-	70	1	0	0	71	
TY 04W	Chan-Hom	259	10	0	0	269	

TS 05W	Linfa	200	6	26	2	234
TS 06W	Nangka	102	3	0	0	105
TY 07W	Soudelor	324	7	50	0	381
TY 08W	Koni	263	6	0	1	270
STY 09W	Imbudo	330	7	0	3	340
TY 10W	Morakot	139	0	50	0	189
TY 11W	Etau	287	6	117	0	410
TY 12W	Krovanh	349	1	0	3	353
TS 13W	Vamco	56	0	37	0	93
TY 14W	Dujuan	204	4	0	0	208
STY 15W	Maemi	309	5	60	1	375
TY 16W	Choi-Wan	190	7	97	0	294
TY 17W	Koppu	236	9	0	0	245
TD 18W	-	116	6	0	0	122
TD 19W	-	68	1	0	0	69
TY 20W	Ketsana	290	8	0	0	298
TY 21W	Parma	440	10	0	0	450
TD 22W	-	62	3	0	0	65
TS 23W	-	148	2	0	0	150
TY 24W	Melor	173	4	18	0	195
TY 25W	Nepartak	266	3	0	0	269
STY 26W	Lupit	528	9	0	0	537
TS 27W	-	127	2	0	0	129
-	Totals	6340	138	478	13	6969
Percentage of Total		90.97	1.98	6.86	0.19	100

NORTHERN INDIAN OCEAN FIX SUMMARY FOR 2003							

TABLE 3-4
 FIXES BY OCEANIC BASIN FOR 2003

Oceanic Basin	Total Fixes
Northwest Pacific	6969
Southern Hemisphere	4867
Northern Indian Ocean	568
Total	12404

4. SUMMARY OF FORECAST VERIFICATION

4.1 ANNUAL FORECAST VERIFICATION

Verification of warning positions and intensities at initial, 12-, 24-, 48-, and 72-hour forecast periods are made against the final best track. The (scalar) track forecast, along-track and cross-track errors (illustrated in Figure 4-1) were calculated for each verifying JTWC forecast. These data, in addition to a detailed summary for each tropical cyclone, are included as Chapter 4. This section summarizes verification data this year and contrasts it with annual verification statistics from previous years.

Figure 4-1. Definition of cross-track error (XTE), along-track error (ATE), and forecast track error (FTE). In this example, the forecast position is ahead of and to the right of the verifying best track position. Therefore, the XTE is positive (to the right of the best track) and the ATE is positive (ahead or faster than the best track). Adapted from Tsui and Miller, 1988.

4.1.1 WESTERN NORTH PACIFIC OCEAN

Table 4-1 includes mean track, along-track and cross-track errors from 1959, when JTWC was founded, until the present. Figure 4-2 shows mean track errors and a 5-year running mean of track errors at 24-, 48- and 72-hours since 1974.

	Table 4-1 MEAN FORECAST TRACK ERRORS (NM) FOR WESTERN NORTH PACIFIC TROPICAL CYCLONES FOR 1959-2003											
	24-HOU				48-HO				72-HOU			
YEAR (Notes)	TY (1)	TC (3)	CROSS TRACK (2)	ALONG TRACK (2)	TY (1)	TC (3)	CROSS TRACK (2)	ALONG TRACK (2)	TY (1)	TC (3)	CROSS TRACK (2)	ALONG TRACK (2)
1959	117*				267*							
1960	177*				354*							
1961	136				274							
1962	144				287				476			
1963	127				246				374			
1964	133				284				429			
1965	151				303				418			
1966	136				280				432			
1967	125				276				414			
1968	105				229				337			

1969	111											

1999	88	106	59	74	150	176	102	119	225	234	139	155
2000	75	81	45	57	136	142	80	98	205	209	118	144
2001	66	73	42	49	114	122	75	78	169	180	110	120
2002	50	66	37	47	94	116	67	79	144	166	88	120
2003	59	73	41	52	119	128	68	94	186	186	89	147
Averages $(1978-$ $2003)$	100	108	61	75	195	204	116	143	303	306	174	214

1. Track errors were calculated for typhoons when intensities were at least 65 kts at warning times
2. Cross-track and along-track errors were adopted by the JTWC in 1986. Right angle errors (used prior to 1986) were recomputed as cross-track errors after-the fact to extend the data base. See Figure 3-1 for the definitions of cross-track and along-track.
3. Mean forecast errors for all warned systems in Northwest Pacific.
*Forecast positions north of 35 degrees North latitude were not verified.
${ }^{* *} 1994$ statistics were recalculated to resolve earlier Along and Cross-Track discrepancies.

24, 48, 72-Hour Mean Error (nm)

Figure 4-2a. Mean track forecast error (nm) and 5-year running mean for 24, 48 and 72 hours for Western North Pacific Ocean tropical cyclones from 1985-2003.

Figure 4-2b. Mean track forecast error (nm) and 5-year running mean for 12 hours for western North Pacific Ocean tropical cyclones from 1992-2003.

Figure 4-2c. Mean track forecast error (nm) and 5-year running mean for 24 hours for western North Pacific Ocean tropical cyclones from 1985-2003.

48-Hour Mean Error (nm)

Figure 4-2d. Mean track forecast error (nm) and 5-year running mean for 48 hours for western North Pacific Ocean tropical cyclones from 1985-2003.

72-Hour Mean Error (nm)

Figure 4-2e. Mean track forecast error (nm) and 5-year running mean for 72 hours for western North Pacific Ocean tropical cyclones from 1985-2003.

Figure 4-3a. Mean intensity forecast error (nm) and 5-year running mean for 24 hours for western North Pacific Ocean tropical cyclones from 1987-2003.

Figure 4-3b. Mean intensity forecast error (nm) and 5-year running mean for 48 hours for western North Pacific Ocean tropical cyclones from 1987-2003.

Figure 4-3c. Mean intensity forecast error (nm) and 5-year running mean for 72 hours for western North Pacific Ocean tropical cyclones from 1987-2003.

4.1.2 NORTH INDIAN OCEAN

Table 4-2
 JTWC INITIAL POSITION AND FORECAST ERRORS (NM) FOR THE NORTH INDIAN OCEAN
 1985-2003

1985	53	31	30	122	102	53	8	242	119	194	0			
1986	28	52	16	134	118	53	7	168	131	80	5	269	189	180
1987	83	42	54	144	97	100	25	205	125	140	21	305	219	188
1988	44	34	30	120	89	63	18	219	112	176	12	409	227	303
1989	44	19	33	88	62	50	17	146	94	86	12	216	164	11
1990	46	31	36	101	85	43	24	146	117	67	17	185	130	104
1991	56	38	43	129	107	54	27	235	200	89	14	450	356	178
1992	191	35	149	128	73	86	100	244	141	166	62	398	276	218
1993	36	27	28	125	87	79	20	198	171	74	12	231	176	116
1994	60	25	44	97	80	44	28	153	124	63	13	213	177	92
1995	54	30	47	138	119	58	32	262	247	77	20	342	304	109
1996	135	33	123	134	94	80	85	238	181	127	58	311	172	237
1997	56	29	42	119	87	49	29	201	168	92	17	228	195	110
1998	80	20	55	106	84	51	34	198	135	106	17	262	188	144
1999	49	8	41	79	59	38	22	184	130	116	10	374	309	177
2000	31	15	24	61	47	26	16	85	69	37	1	401	399	38
2001	50	12	41	61	40	37	31	115	71	71	22	166	44	154
2002	42	18	26	79	63	38	11	120	95	55	3	132	86	89
2003	40	22	37	108	66	69	31	196	115	132	7	354	210	252
(1985-2002)														
Avg	63	29	48	110	82	57	30	188	135	103	19	291*	213*	146*
*17 year average (1985 not available)														

Table 4-2 includes mean track, along-track and cross-track errors for a 16-year period. Figure 4-6 shows mean track errors and a 5-year running mean of track errors at 24-and 48-hours since 1985, and at 72-hours since 1986.

24, 48, 72-Hour Mean Error (nm)

Figure 4-4a. Mean track forecast error (nm) and 5-year running mean for 24,48 and 72 hours for North Indian Ocean tropical cyclones from 1985-2003.

Figure 4-4b. Mean track forecast error (nm) and 5-year running mean for 24 hours for North Indian Ocean tropical cyclones from 1985-2003.

48-Hour Mean Error (nm)

Figure 4-4c. Mean track forecast error (nm) and 5-year running mean for 48 hours for North Indian Ocean tropical cyclones from 1985-2003.

Figure 4-4d. Mean track forecast error (nm) and 5-year running mean for 72 hours for North Indian Ocean tropical cyclones from 1987-2003.

24, 48, 72-Hour Intensity Error (kts)

Figure 4-5a. Mean intensity forecast error (nm) and 5-year running mean for 24,48 and 72 hours for North Indian Ocean tropical cyclones from 1995-2003.

24-Hour Intensity Error (kts)

Figure 4-5b. Mean intensity forecast error (nm) and 5-year running mean for 24 hours for North Indian Ocean tropical cyclones from 1995-2003.

48-Hour Intensity Error (kts)

Figure 4-5c. Mean intensity forecast error (nm) and 5-year running mean for 48 hours for North Indian Ocean tropical cyclones from 1995-2003.

72-Hour Intensity Error (kts)

Figure 4-5d. Mean intensity forecast error (nm) and 5-year running mean for 72 hours for North Indian Ocean tropical cyclones from 1995-2003.

4.1.3 SOUTH PACIFIC AND SOUTH INDIAN OCEANS (SOUTHERN HEMISPHERE)

Avg	296	26	252	116	82	65	199	220	155	124	58^{*}	253^{*}	177^{*}	151^{*}

*8-year average

Table 4-3 includes mean track, along-track and cross-track errors for a 16-year period. Figure 4-7 shows mean track errors and a 5-year running mean of track errors at 24-and 48-hours since 1981, and at 72-hours since 1995.

24, 48, 72-Hour Mean Error (nm)

Figure 4-6a. Mean track forecast error (nm) and 5-year running mean for 24,48 and 72 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1985-2003.

Figure 4-6b. Mean track forecast error (nm) and 5-year running mean for 24 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1985-2003.

Figure 4-6c. Mean track forecast error (nm) and 5-year running mean for 48 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1985-2003.

Figure 4-6d. Mean track forecast error (nm) at 72 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1995-2003.

24, 48, 72-Hour Intensity Error (kts)

Figure 4-7a. Mean intensity forecast error (nm) and 5-year running mean for 24,48 and 72 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1996-2003.

Figure 4-7b. Mean intensity forecast error (nm) and 5-year running mean for 24 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1996-2003.

Figure 4-7c. Mean intensity forecast error (nm) and 5-year running mean for 48 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1996-2003.

Figure 4-7d. Mean track forecast error (nm) and 5-year running mean for 72 hours for Southern Hemisphere (Africa to 180 degrees) tropical cyclones from 1996-2003.

Go To: 4.2 TESTING AND RESULTS

4.2 TESTING AND RESULTS

A comparison of selected techniques is included in Table 4-4 for all western North Pacific tropical cyclones, Table 4-5 for North Indian Ocean tropical cyclones, and Table 4-6 for Southern Hemisphere tropical cyclones.

For example, in Table 4-4 for the homogeneous comparison of the 12-hour mean forecast error between JTWC and NGPS, 611 cases were available. The average forecast error at 12 hours was 55 nm for NGPS and 42 nm for JTWC. The difference of 13 nm is shown in the lower right. Due to computational round-off, differences are not always exact.

Table 4-4 Error Statistics for Selected Objective Techniques Western North Pacific Ocean																						
12-HOUR MEAN FORECAST ERROR (NM)																						
	JTWC		NGPS		EGRR		AFW1		GFDN		JGSM		JTYM		JAVN		CLIP		CONU		CONW	
JTWC	648	43																				
	43	0																				
NGPS	611	42	662	61																		
	55	13	61	0																		
EGRR	304	44	305	55	329	69																
	64	20	63	8	69	0																
AFW1	252	42	257	752	241	161	259	85														
	86	44	85	33	87	26	85	0														
GFNI	436	40	430	52	214	462	201	82	440	53												
	52	12	52	0	52	-10	51	-31	53	0												
JGSM	251	42	248	85	245	57	215	83	191	51	256	57										
	56	14	56	3	57	0	55	-28	54	3	57	0										
JTYM	464	42	454	454	218	86	186	84	347	52	214	58	471	57								
	55	13	53	-1	54	-6	52	-32	49	-3	58	0	57	0								
JAVN	576	42	597	75	290	06	228	83	392	51	224	52	418	55	706	68						
	60	18	60	1	59	-9	55	-28	55	4	52	0	57	2	68	0						
CLIP	644	43	653	36	323	368	256	86	440	53	255	57	470	57	662	66	753	59				
	54	11	54	-6	56	-12	53	-33	52	-1	53	-4	54	-3	58	-8	59	0				
CONU	620	42	618	87	305	566	254	86	440	53	249	57	460	56	589	61	663	55	663	45		
	43	1	42	-15	45	-21	42	-44	40	-13	43	-14	42	-14	44	-17	45	-10	45	0		
CONW	493	43	499	60	243	371	196	83	338	53	197	57	385	57	490	63	553	56	517	45	553	45
	41	-2	42	-18	44	-27	41	-42	38	-15	42	-15	39	-18	44	-19	45	-11	44	-1	45	0

[^7]

JGSM	219	102	213	115	210	120	189	167	168	142	222	108										
	104	2	104	-11	107	-13	106	-61	100	-42	108	0										
JTYM	406	102	395	117	189	125	162	173	302	142	185	108	413	114								
	109	7	109	-8	115	-10	105	-68	99	-43	115	7	114	0								
JAVN	491	99	508	119	249	124	196	167	332	133	197	103	367	109	612	117						
	107	8	107	-12	106	-18	95	-72	99	-34	99	-4	107	-2	117	0						
CLIP	547	102	553	120	273	126	219	173	370	141	221	108	412	114	573	113	655	169				
	165	63	163	43	162	36	168	-5	171	30	166	58	170	56	165	52	169	0				
CONU	525	102	523	117	256	124	217	172	370	141	217	107	403	112	506	108	568	167	568	106		
	101	-1	100	-17	106	-18	101	-71	95	-46	103	-4	103	-9	102	-6	106	-61	106	0		
CONW	414	105	420	122	202	130	167	175	280	140	168	107	332	112	427	113	474	166	439	110	474	102
	97	-8	96	-26	103	-27	96	-79	88	-52	98	-9	95	-17	98	-15	102	-64	102	-8	102	0
48-HOUR	UR M	EAN	FORE	ECAS	ST ER	RRO	(N															
	JTW		NGP		EGR		AFW		GFD		JGS		JTYM		JAVN		CLIP		CON		CON	
JTWC	495	128																				
	128	0																				
NGPS	464	127	514	156																		
	149	22	156	0																		
EGRR	229	125	231	146	252	151																
	146	21	146	0	151	0																
AFW1	194	133	199	148	183	149	200	225														
	223	90	222	74	218	69	225	0														
GFNI	321	121	324	145	160	140	154	224	328	179												
	176	55	179	34	170	30	180	-44	179	0												
JGSM	197	130	195	150	191	148	169	217	149	176	200	138										
	133	3	134	-16	135	-13	135	-82	128	-48	138	0										
JTYM	368	131	363	155	174	155	148	236	271	183	167	141	377	145								
	139	8	137	-18	148	-7	139	-97	129	-54	151	10	145	0								
JAVN	447	125	468	155	226	147	179	216	300	175	179	135	338	140	568	144						
	135	10	138	-17	130	-17	127	-89	130	-45	130	-5	139	-1	144	0						
CLIP	493	128	507	155	246	152	198	226	328	179	199	138	376	144	530	141	604	231				
	228	100	228	73	221	69	239	13	242	63	233	95	237	93	226	85	231	0				
CONU	471	128	477	153	229	149	196	224	328	179	195	136	367	142	464	138	517	231	517	135		
	128	0	130	-23	130	-19	132	-92	121	-58	133	-3	134	-8	132	-6	135	-96	1350	0		
CONW	371	133	384	160	182	155	150	233	246	182	152	140	302	144	391	145	430	227	398	141	430	129
	124	-9	126	-34	128	-27	126	107	115	-67	130	-10	125	-19	127	-18	129	-98	131	-10	129	0

	JTWC		NGPS		EGRR		AFW1		GFDN		JGSM		JTYM		JAVN		CLIP		CONU		CONW	
JTWC	397	186																				
	186	0																				
NGPS	361	184	406	221																		
	212	28	221	0																		
EGRR	179	184	178	207	199	213																
	208	24	207	0	213	0																
AFW1	153	189	157	202	138	208	158	334														
	324	135	331	129	303	95	334	0														
GFNI	247	178	251	210	123	204	120	337	256	253												
	250	72	252	42	243	39	244	-93	253	0												
JGSM	150	192	150	214	143	213	125	324	112	250	155	202										
	194	2	195	-19	191	-22	193	131	190	-60	202	0										
JTYM	285	190	282	220	128	230	113	366	207	256	126	212	297	213								
	206	16	205	-15	223	-7	213	153	195	-61	231	19	213	0								
JAVN	345	178	356	216	177	210	137	326	230	241	139	199	256	207	450	220						
	210	32	216	0	201	-9	200	126	196	-45	211	12	223	16	220	0						
CLIP	397	186	401	220	195	214	157	336	256	253	155	202	297	213	422	218	504	343				
	339	153	348	128	329	115	369	33	375	122	353	151	358	145	334	116	343	0				
CONU	374	185	376	214	177	205	155	333	256	253	150	199	287	211	360	216	416	348	416	197		
	187	2	191	-23	186	-19	189	144	182	-71	194	-5	199	-12	191	-25	197	151	197	0		
CONW	293	190	296	224	140	213	116	353	188	255	117	206	236	218	305	230	347	338	315	208	347	186
	179	-11	184	-40	186	-27	184	169	173	-82	189	-17	181	-37	180	-50	186	- 152	189	-19	186	0

96-HOUR MEAN FORECAST ERROR (NM)

JTWC NGPS EGRR JAVN CLIP CONU CONW

JTWC	242	242

2420
NGPS $227 \quad 239311299$

274	35	299	0

EGRR	114	237	131	275	148	291

$\begin{array}{lllllll}283 & 46 & 285 & 10 & 291 & 0\end{array}$

| JAVN | 210 | 236 | 266 | 285 | 127 | 276 | 352 | 290 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	288	52	293	8	277	1	290	0														
CLIP	0	0	0	0	0	0	0	0	2	960												
	0	0	0	0	0	0	0	0	960	0												
CONU	231	240	278	294	128	284	264	289	2	960	309	259										
	242	2	259	-35	249	-35	246	-43	447	513	259	0										
CONW	164	234	204	304	90	276	193	314	0	0	225	264	225	264								
	238	4	266	-38	251	-25	250	-64	0	0	264	0	264	0								
120-HO	UR	AN	FO	RECA	AST	ERR	R	NM)														
	JTW		NGP		EGR		JAV		CON		CON	NW										
JTWC	176	304																				
	304	0																				
NGPS	160	303	230	403																		
	349	46	403	0																		
EGRR	78	310	87	360	102	372																
	359	49	366	6	372	0																
JAVN	146	308	183	377	89	366	261	363														
	364	56	367	-10	348	-18	363	0														
CONU	169	296	196	370	86	351	181	355	224	316												
	296	0	317	-53	293	-58	310	-45	316	0												
CONW	114	276	138	388	56	343	129	366	158	320	158	320										
	284	8	319	-69	286	-57	301	-65	320	0	320	0										

Table 4-5 Error Statistics for Selected Objective Techniques

North Indian Ocean

12-HOUR MEAN FORECAST ERROR (NM)

	JTWC		NGPS		EGRR		AFW1		GFDN	JAVN	CLIP	CONU	
JTWC	38	58											
	58	0											
NGPS	35	58	63	78									
	67	9	78	0									
EGRR	11	54	27	82	29	92							
	68	14	87	5	92	0							
AFW1	7	65	21	71	18	79	22	72					

	59	-6	75	4	74	-5	72	0								
GFDN	18	55	22	69	0	0	0	0	22	63						
	62	7	63	-6	0	0	0	0	63	0						
JAVN	0	0	1	130	1	224	0	0	0	0	1	155				
	0	0	155	25	155	-69	0	0	0	0	155	0				
CLIP	38	58	61	76	28	91	21	70	22	63	1	155	73	72		
	70	12	72	-4	74	-17	81	11	61	-2	121	-34	72	0		
CONW	17	60	24	78	11	62	8	58	7	56	0	0	27	71	27	68
	59	-1	69	-9	70	8	72	14	36	-20	0	0	68	-3	68	0
24-HOUR MEAN FORECAST ERROR (NM)																
	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		CLIP		CONU	
JTWC	36	107														
	107	0														
NGPS	32	106	57	112												
	105	-1	112	0												
EGRR	11	96	27	116	29	120										
	108	12	120	4	120	0										
AFW1	7	128	19	100	18	121	20	103								
	108	-20	98	-2	104	-17	103	0								
GFDN	15	100	18	84	0	0	0	0	19	108						
	108	8	108	24	0	0	0	0	108	0						
JAVN	0	0	1	107	1	220	0	0	0	0	1	114				
	0	0	114	7	114	-106	0	0	0	0	114	0				
CLIP	36	107	55	109	28	119	19	104	19	108	1	114	69	134		
	142	35	134	25	133	14	161	57	128	20	123	9	134	0		
CONW	16	116	22	126	11	75	7	108	5	87	0	0	25	135	25	129
	124	8	129	3	130	55	137	29	76	-11	0	0	129	-6	129	0
36-HOUR MEAN FORECAST ERROR (NM)																
	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		CLIP		CONU	
JTWC	33	154														
	154	0														
NGPS	30	154	54	148												
	145	-9	148	0												
EGRR	11	144	26	148	27	160										
	141	-3	160	12	160	0										
AFW1	7	188	18	145	16	169	18	128								
	166	-22	128	-17	129	-40	128	0								

GFDN	14	140	17	111	0	0	0	0	18	153						
	164	24	155	44	0	0	0	0	153	0						
JAVN	0	0	1	118	1	167	0	0	0	0	1	110				
	0	0	110	-8	110	-57	0	0	0	0	110	0				
CLIP	33	154	52	144	26	160	17	135	18	153	1	110	65	192		
	210	56	196	52	197	37	244	109	186	33	108	-2	192	0		
CONW	15	180	20	170	10	130	6	176	4	139	0	0	23	206	23	195
	190	10	195	25	200	70	217	41	119	-20	0	0	195	-11	195	0
48-HOUR MEAN FORECAST ERROR (NM)																
	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		CLIP		CONU	
JTWC	30	192														
	192	0														
NGPS	28	196	51	191												
	188	-8	191	0												
EGRR	11	190	24	184	25	184										
	162	-28	188	4	184	0										
AFW1	6	223	16	180	14	208	16	184								
	175	-48	184	4	185	-23	184	0								
GFDN	13	180	16	157	0	0	0	0	16	199						
	210	30	199	42	0	0	0	0	199	0						
JAVN	0	0	1	124	1	43	0	0	0	0	1	124				
	0	0	124	0	124	81	0	0	0	0	124	0				
CLIP	30	192	50	185	25	184	16	184	16	199	1	124	62	260		
	280	88	264	79	264	80	334	150	267	68	77	-47	260	0		
CONW	12	223	18	229	9	181	5	228	3	172	0	0	21	295	21	263
	234	11	263	34	249	68	308	80	185	13	0	0	263	-32	263	0
72-HOUR MEAN FORECAST ERROR (NM)																
	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		CLIP		CONU	
JTWC	6	338														
	338	0														
NGPS	5	348	43	278												
	417	69	278	0												
EGRR	0	0	14	222	16	224										
	0	0	239	17	224	0										
AFW1	2	349	13	299	7	293	13	195								
	95 -	254	195	-104	262	-31	195	0								
GFDN	2	292	14	243	0	0	0	0	14	283						

	384	92	283	40	0	0	0	0	283	0						
JAVN	0	0	1	270	1	145	0	0	0	0	1	276				
	0	0	276	6	276	131	0	0	0	0	276	0				
CLIP	6	338	42	276	16	224	13	195	14	283	1	276	54	416		
	610	272	425	149	349	125	536	341	386	103	229	-47	416	0		
CONW	6	338	13	390	2	195	4	85	2	384	0	0	16	593	16	453
	411	73	461	71	270	75	650	565	369	-15	0	0	453	-140	453	0

Table 4-6
Error Statistics for Selected Objective Techniques Southern Hemisphere

12-HOUR MEAN FORECAST ERROR (NM)

	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		TCLP		TLAP		CLIP		CONW	
JTWC	311	45																		
	45	0																		
NGPS	283	43	563	63																
	54	11	63	0																
EGRR	162	40	253	58	302	80														
	54	14	75	17	80	0														
AFW1	124	37	167	48	167	54	179	108												
	100	63	104	56	103	49	108	0												
GFDN	100	47	211	53	3	1568	0	0	214	48										
	51	4	47	-6	66	1502	0	0	48	0										
JAVN	230	43	418	62	162	83	107	115	195	47	523	89								
	74	31	78	16	76	-7	73	-42	67	20	89	0								
TCLP	61	38	82	50	81	53	65	107	1	30	53	75	87	79						
	78	40	79	29	81	28	81	-26	104	74	91	16	79	0						
TLAP	62	38	84	50	84	53	68	107	1	30	52	74	77	80	89	137				
	137	99	138	88	139	86	144	37	76	46	138	64	128	48	137	0				
CLIP	309	45	555	63	286	78	174	105	212	48	484	84	86	79	88	137	690	191		
	124	79	157	94	133	55	72	-33	114	66	187	103	128	49	118	-19	191	0		
CONW	8	41	12	67	7	94	5	228	3	17	15	159	3	45	3	163	17	123	17	51
	48	7	56	-11	45	-49	58	170	35	18	52 -	107	61	16	61	102	51	-72	51	0

	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		TCLP		TLAP		CLIP		CONW	
JTWC	278	74																		
	74	0																		
NGPS	258	73	526	95																
	82	9	95	0																
EGRR	150	65	239	90	287	111														
	87	22	108	18	111	0														
AFW1	115	63	156	79	156	87	168	134												
	120	57	128	49	128	41	134	0												
GFDN	92	83	195	83	3	1606	0	0	198	78										
	87	4	78	-5	132	1474	0	0	78	0										
JAVN	209	72	386	94	155	109	101	138	181	79	489	127								
	105	33	115	21	112	3	101	-37	100	21	127									
TCLP	58	65	76	81	76	83	58	122	1	6	50	110	81	123						
	115	50	122	41	127	44	110	-12	39	33	129	19	123	0						
TLAP	58	64	77	80	78	83	61	123	1	6	48	101	71	123	82	192				
	188	124	185	105	196	113	194	71	30	24	224	123	182	59	192	0				
CLIP	276	75	518	95	271	110	163	129	196	78	452	121	80	122	81	193	646	240		
	172	97	207	112	180	70	120	-9	160	82	226	105	183	61	172	-21	240	0		
CONW	7	79	10	99	7	140	4	260	3	18	13	236	2	37	2	635	15	234	15	82
	83	4	89	-10	80	-60	84	176	54	36	83 -	153	78	41	78	- 557	82	-152	82	0

36-HOUR MEAN FORECAST ERROR (NM)

	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		TCLP	TLAP	CLIP	CONW
JTWC	250	101														
	101	0														
NGPS	232	99	484	127												
	110	11	127	0												
EGRR	134	89	217	123	262	126										
	119	30	122	-1	126	0										
AFW1	100	86	137	112	135	119	148	165								
	146	60	157	45	157	38	165	0								
GFDN	81	111	177	114	1	230	0	0	179	109						
	121	10	109	-5	18	-212	0	0	109	0						
JAVN	186	102	347	123	138	111	89	158	160	110	444	162				

	133	31	149	26	149	38	142	-16	120	10	162	0								
TCLP	53	94	69	116	67	115	51	146	1	12	44	162	73	152						
	148	54	153	37	157	42	148	2	18	6	158	-4	152	0						
TLAP	53	89	70	111	69	116	53	139	1	12	44	160	63	149	74	244				
	239	150	237	126	248	132	235	96	55	43	300	140	216	67	244	0				
CLIP	249	101	479	127	247	125	143	159	179	109	412	153	72	152	73	245	602	332		
	232	131	295	168	249	124	170	11	220	111	323	170	236	84	218	-27	332	0		
CONW	6	122	8	146	6	182	3	267	3	29	10	262	2	73	2	646	13	338	13	120
	117	-5	131	-15	109	-73	115	-	152	80	51	120	142	141	68	141	-	120	120	-218

48-HOUR MEAN FORECAST ERROR (NM)

	JTWC		NGPS		EGRR		AFW1		GFDN		JAVN		TCLP		TLAP		CLIP		CONW	
JTWC	220	128																		
	128	0																		
NGPS	204	124	441	156																
	137	13	156	0																
EGRR	121	114	196	152	238	160														
	150	36	155	3	160	0														
AFW1	86	117	116	140	116	144	127	212												
	183	66	203	63	197	53	212	0												
GFDN	69	135	157	147	2	288	0	0	159	142										
	149	14	142	-5	78	-210	0	0	142	0										
JAVN	164	131	315	155	125	143	79	200	144	141	408	198								
	162	31	184	29	178	35	176	-24	157	16	198	0								
TCLP	49	115	61	151	60	143	45	175	1	12	38	172	65	185						
	184	69	187	36	188	45	170	-5	24	12	209	37	185	0						
TLAP	48	110	59	138	58	136	44	164	1	12	36	169	56	180	63	289				
	289	179	284	146	284	148	267	103	110	98	357	188	290	110	289	0				
CLIP	219	128	435	156	224	160	122	205	159	142	379	191	64	185	62	291	552	450		
	277	149	390	234	325	165	225	20	274	132	447	256	280	95	266	-25	450	0		
CONW	5	148	6	164	5	276	2	472	3	55	8	319	1	67	1	901	11	572	11	148
	157	9	151	-13	134	-142	102	$\overline{3} \overline{-}$	116	61	143	176	84	17	84	$\overline{817}$	148	-424	148	0

72-HOUR MEAN FORECAST ERROR (NM)

	JTWC		NGPS	EGRR	AFW1	GFDN	JAVN	TCLP	TLAP	CLIP	CONW
JTWC	37	123									
	123	0									

NGPS	37	123	357	222																

96-HOUR MEAN FORECAST ERROR (NM)

	NGPS		EGRR		JAVN		TCLP		TLAP	
NGPS	274	288								
	288	0								
EGRR	106	283	141	260						
	243	-40	260	0						
JAVN	186	282	74	244	259	327				
	303	21	293	49	327	0				
TCLP	0	0	0	0	0	0	1	303		
	0	0	0	0	0	0	303	0		
TLAP	0	0	0	0	0	0	1	303	1	334
	0	0	0	0	0	0	334	31	334	0

120-HOUR MEAN FORECAST ERROR (NM)

| | NGPS | EGRR | | | JAVN | | TCLP | TLAP | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NGPS | 206 | 347 | | | | | | | | |
| | 347 | 0 | | | | | | | | |
| EGRR | 69 | 340 | 90 | 260 | | | | | | |
| | 274 | -66 | 260 | 0 | | | | | | |

JAVN	130	348	48	268	176	384														
	362	14	361	93	384	0														
TCLP	0	0	0	0	0	0	1	459												
	0	0	0	0	0	0	459	0												
TLAP	0	0	0	0	0	0	1	459	1	463										
	0	0	0	0	0	0	463	4	463	0										

 ,

[^0]: - KGWC
 - PGTW

 KWBC

 - OTHER
 - T-Numbers
 - Best Track

[^1]: - KGWC
 - PGTW
 - KWBC
 - OTHER
 - T-Numbers
 - Best Track

[^2]: *Named by WMO designated RSMC

[^3]: - PGTW
 - KGWC
 - KWBC
 - OTHER
 - T-Numbers
 - Best Track

[^4]: *Named by WMO designated RSMC

[^5]: Verification Statistics missing for warning number 8

[^6]: - PGTW
 - KGWC
 - KWBC
 - RODN
 - RJTD
 - OTHER
 - T-Numbers
 - Best Track

[^7]: file:///C|/Documents\%20and\%20Settings/All\%20Us...03\%20folder/ATCR_2003/chapter4/chapter4_2.html (1 of 12) [4/10/2005 11:24:24 AM]

