1984 ANNUAL TROPICAL CYCLONE REPORT

JOINT TYPHOON WARNING CENTER glam, mariana islands

FRONT COVER: A synoptic view of Tropical Cyclone 30S (Kamisy) taken on 8 April 1984 by Space Shuttle Mission 41C. Kamisy was located east-northeast of Madagascar with an estimated intensity of $100 \mathrm{kt}(51 \mathrm{~m} / \mathrm{s})$. This photograph was taken with a 100 mm lens from an altitude of $260 \mathrm{~nm}(482 \mathrm{~km})$. Note the convergent banding well away from the eye. The cirrus outflow is extremely strong partially abscuring the near field image. IPhotograph provided by LCDR W. T. Aldinger, NAUPOLAROCEANCEN Detachment, Johnson Space Center, Texas).

U.S. NAVAL OCEANOGRAPHY COMMAND CENTER JOINT TYPHOON WARNING CENTER
 COMNAVMARIANAS BOX 17
 FPO SAN FRANCISCO 96630

\author{

* KENDALL G. HINMAN
 Captain, United States Navy
}

CHARLES G. STEINBRUCK Captain, United States Navy COMMANDING

DAVID W. MCLAWHORN

Lieutenant Colonel, United States Air Force DIRECTOR, JOINT TYPHOON WARNING CENTER COMMANDER, DETACHMENT 1, IST WEATHER WING

*Transferred during 1984

STAFF

LCDR Scott A. Sandgathe, USN MAJ Mark E. Older III, USAF
*LCDR Robert L. Allen Jr., USN
LCDR Janice P. Garner, USN CAPT Boyce R. Columbus, USAF LT Brett T. Sherman, USN *CAPT Robert S. Lilianstrom, USAF *LT Henry Jones, USN CAPT Michael T. Gilford, USAF LT Mark J. Gunzelman, USNR LT William P. Wirfel, USN *AGl James A. Frush, USN *AG2 Car1 L. Hurless, USN *SSGT Michael W. Blackburn, USAF
AG2 Kevin L. Cobb, USN
*AG2 Anne W. Lackey, USN
AG2 Teddy R. George, USN
*AG3 Judith L. Allen, USN
*SGT Jeffrey A. Goldman, USAF
*SRA Jeffrey L. Cimini, USAF
SRA Margaret E. Gray, USAF
AG3 Kristopher W. Buttermore, USN
SRA Thomas L. Parra, USAF
AlC James Kelley III, USAF
AlC Ronald W. Jones, USAF
AGAN Shirley A. Murdock, USN
AGAN Randall J. MCKillip, USN

CONTRIBUTOR: Detachment 1, IWW - USAF Satellite Operations

MAJ Frank H. Wells, USAF
*CAPT David T. Miller, USAF
ILT Donna P. McNamara, USAF
*MSGT Michael R. Pukajlo, USAF
*TSGT Terrence M. Young, USAF
TSGT William H. Taylor, USAF
*SSGT Terry R. Sandmeier, USAF
SSGT Charles B. Siniff Jr., USAF
SSGT Patti A. Ashby, USAF
*Transferred during 1984

FOREWARD

The Annual Tropical Cyclone Report is prepared by the staff of the Joint Typhoon Warning Center (JTWC), a combined USAF/USN organization operating under the command of the Commanding Officer, U. S. Naval Oceanography Command Center/ Joint Typhoon Warning Center, Guam. JTWC was established in April 1959 when USCINCPAC directed USCINCPACFLT to provide a single tropical cyclone warning center for the western North Pacific region. The operations of JTWC are guided by CINCPACINST 3140.1 (series).

The mission of the Joint Typhoon Warning Center is multi-faceted and includes:

1. Continuous monitoring of all tropical weather activity in the Northern and Southern Hemispheres, from 180 degrees longitude westward to the east coast of Africa, and the prompt issuance of appropriate advisories and alerts when tropical cyclone development is anticipated.
2. Issuing warnings on all signifisant tropical cyclones in the above area of responsibility.
3. Determination of reconnaissance requirements for tropical cyclone surveillance and assignment of appropriate priorities.
4. In depth post-storm analysis of all tropical cyclones occurring within the western North Pacific and North Indian Oceans for publication in this report.
5. Cooperation with the Naval

Environmental Prediction Research Facility, Monterey, California, on the operational evaluation of tropical cyclone models and forecast aids, and the development of new techniques to support operational forecast scenarios.

Satellite imagery used throughout this report represents data obtained by the tropical cyclone satellite surveillance network. The personnel of Detachment 1 ,

1WW, colocated with JTWC at Nimitz Hill, Guam, coordinate the satellite aquisitions and tropical cyclone surveillance with the following units:

Det 5. IKW, Clark $A B, R P$
Det 8, lWW, Kadena AB, Japan
Det 15, 30wS, Osan AB, Korea
Det 4, IWW, Hickam AFB, Hawaii
Air Force Global Weather Central, Offutt AFB, Nebraska

In addition, the Naval Oceanography Command Detachment, Diego Garcia, and DMSP equipped U.S. Navy aircraft carriers have been instrumental in providing vital satellite position fixes of tropical cyclones in the Indian Ocean.

Should JTWC become incapacitated, the Alternate Joint Typhoon Warning Center (AJTWC) located at the U. S. Naval Western Oceanography Center, Pearl Harbor, Hawaii, assumes warning responsibilities. Assistance in determining satellite reconnaissance requirements, and in obtaining the resultant data, is provided by Det 4, 1WW, Hickam AFB, Hawaii.

A special thanks is extended to the men and women of: 27 th Information Systems Squadron, Operating Location C, for their continuing support by providing high quality real-time satellite imagery; the Pacific Fleet Audio-Visual Center, Guam, for their assistance in the reproduction of satellite and graphics data for this report; to the Navy Publications and Printing Service Branch Office, Guam, for their efforts to meet publication deadlines: and to Mrs. Patricia G. Lizama for her patience and perseverence in typing the many drafts and final manuscript of this report. A special thanks is also extended to SSGT Charles B. Siniff Jr. for gridding the numerous satellite pictures used in this report.

TABLE OF CONTENTS

CHAPTER V APPLIED TROPICAL CYCLONE RESEARCH SUMMARY PAGENAVENVPREDRSCHFAC --156The Navy Two-Way Interactive Nested TropicalCyclone Model (NTCM)Tropical Cyclone Synoptic Analysis Display System
Tropical Cyclone Objective Decision-Tree ForecastingAid
JTWC Climatological Data Set
A Statistical Method for 1 to 3 Day TropicalCyclone Track Prediction
Tropical Cyclone Haven Studies
Navy Tactical Applications Guide (MTAG), Vol 6
Statistical Tropical Cyclone Forecasting AidsFor The Southern Hemisphere
Satellite Based Tropical Cyclone Intensity Forecasts
Characteristics of North Indian Ocean TropicalCyclone Activity
Tropical Cyclone Readiness Condition Setting Program
ANNEX A
TROPICAL CYCLONE TRACK AND FIX DATA

1. Western North Pacific Cyclone Data 159
2. North Indian Ocean Cyclone Data 208
APPENDIX I. Contractions 213
II. Definitions 215
III. Names for Tropical Cyclones 216
IV. References 217
V. Past Annual Tropical Cyclone Reports 218
DISTRIBUTION 219

CHAPTER I - OPERATIONAL PROCEDURES

1. GENERAL

The Joint Typhoon Warning Center (JTWC) provides a variety of routine services to the organizations within its area of responsibility, including:
a. Significant Tropical Weather Advisories: issued daily, this product describes all tropical disturbances and assesses their potential for further development during the advisory period;
b. Tropical Cyclone Formation Alerts: issued when synoptic, satellite and/or aircraft reconnaissance data indicates development of a significant tropical cyclone in a specified area is likely;
c. Tropical Cyclone Warnings: issued periodically throughout each day for significant tropical cyclones, giving forecasts of position and intensity of the system; and
d. Prognostic Reasoning Messages: issued twice daily for tropical storms and typhoons in the western North Pacific; these messages discuss the rationale behind the most recent JTWC warnings.

The recipients of the services of JTWC essentially determine the conteft of JTWC's products according to their ever-changing requirements. Therefore, the spectrum of routine services is subject to change from year to year. Such changes are usually the result of deliberations held at the Annual Tropical Cyclone Conference.

2. DATA SOURCES

a. COMPUTER PRODUCTS:

A standard array of synoptic-scale computer analyses and prognostic charts are available from the Fleet Numerical Oceanography Center (FLENUMOCEANCEN) at Monterey, California. These products are provided to JTWC via the Naval Environmental Data Network (NEDN).

b. CONVENTIONAL DATA:

This data set is comprised of land-based and shipboard surface and upper-air observations taken at or near synoptic times, cloudmotion winds derived twice daily from satellite data, and enroute meteorological observations from commercial and military aircraft (AIREPS) within six hours of synoptic times. Conventional data charts are prepared daily at 00002 and 12002 using handand computer-plotted data for the surface/ gradient and 200 mb (upper-tropospheric) levels. In addition to these analyses, charts at the 850,700 , and 500 mb levels are computer-plotted from rawinsonde/pibal observations at the 12-hour synoptic times.

c. AIRCRAFT RECONNAISSANCE:

Aircraft weather reconnaissance data are invaluable for locating the position of the center of developing systems and essential for the accurate determination of numerous parameters, including;

- maximum surface and flight level wind
- minimum sea-level pressure
- horizontal surface and flight level wind distribution
- eye/center temperature and dewpoint

In addition wind and pressure-height data at the 500 and/or 400 mb levels, provided by the aircraft while enroute to, or from fix missions, or during dedicated synoptic-scale flights, provide a valuable supplement to the all too sparse data fields of JTWC's area of responsibility. A more detailed discussion of aircraft weather reconnaissance is presented in Chapter II.

a. SATELLITE RECONNAISSANCE:

Meteorological satellite data obtained from the Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA) spacecraft played a major role in the early detection and tracking of tropical cyclones in 1984. A discussion of the role of these programs is presented in Chapter II.

e. RADAR RECONNAISSANCE:

During 1984, as in previous years, landbased radar coverage was utilized extensively when available. Once a tropical cyclone moved within the range of land-based radar sites, their reports were essential for determination of small scale movement. Use of radar reports during 1984 is discussed in Chapter II.

3. COMMUNICATIONS

a. JTWC currently has access to three primary communications circuits.
(1) The Automated Digital Network (AUTODIN) is used for dissemination of warnings, alerts and other related bulletins to Department of Defense installations. These messages are relayed for further transmission over U.S. Navy Fleet Broadcasts. and U.S. Coast Guard CW (continuous wave Morse Code) and voice broadcasts. Inbound message traffic for JTWC is received via AUTODIN addressed to NAVOCEANCOMCEN GUAM, JTWC GUAM, or DET 1 lWW NIMITZ HILL GU.*
(2) The Air Force Automated Weather Network (AWN) provides weather data to JTWC through a dedicated circuit from the Automated Digital Weather Switch (ADWS) at Hickam AFB, Hawaii. The ADWS selects and
routes the large volume of meteorological reports necessary to satisfy JTWC requirements for the right data at the right time. Weather bulletins prepared by JTWC are inserted into the AWN circuit via the NEDS and the Nimitz Hill Naval Telecommunications Center (NTCC) of the Naval Communications Area Master Station Western Pacific.
(3) The Naval Environmental Data Network (NEDN) is the communications link with the computers at FLENUMOCEANCEN. JTWC is able to receive environmental data from FLENUMOCEANCEN and to access the computers directly to execute numerical techniques.
b. The Naval Environmental Display Station (NEDS) has become the backbone of the JTWC communications system. It is the terminal that provides a direct interface with the NEDN and AWN circuits, and is capable of preparing messages for indirect AUTODIN transmission. The NEDS also provides a means for the Typhoon Duty Officer (TDO) to request forecast aids which are processed on the FLENUMOCEANCEN computers and transmitted to the TDO over the NEDN circuit.

4. ANALYSES

A composite surface/gradient level ($3000 \mathrm{ft}(915 \mathrm{~m})$) manual analysis of the JTWC area of responsibility is accomplished on the 0000 z and 1200 z conventional data. Analysis of the wind field using streamlines is stressed for tropical and subtropical regions. Analysis of the pressure field is accomplished routinely by the Naval
Oceanography Command Center (NOCC)
operations watch-team and is used by JTWC in conjunction with their analysis of the tropical wind fields.

A composite upper-tropospheric manual streamline analysis is accomplished daily utilizing rawinsonde data from 300 mb through 100 mb , winds derived from cloud motion analysis, and AIREPS (taken plus or minus 6 hours of chart valid time) at or above 29,000 feet $(8,839 \mathrm{~m})$. Wind and height data are used to generate a representative analysis of tropical cyclone outflow patterns, mid-latitude steering currents, and features that may influence tropical cyclone intensity. All charts are handplotted in the tropics to provide all available data as soon as possible to the TDO. These charts are augmented by computerplotted charts for the final analysis.

Computer plotted charts for the 850,700 , and 500 mb levels are available for streamline and/or height-change analysis from the 0000 z and 12002 data base. Additional sectional charts at intermediate synoptic times and auxilary charts such as stationtime plot diagrams and pressure-change charts are also analyzed during periods of significant tropical cyclone activity.

5. FORECAST AIDS

The following objective techniques were employed in tropical cyclone forecasting during 1984 (a description of these techniques is presented in Chapter IV):
a. MOVEMENT
(1) 12-HOUR EXTRAPOLATION
(2) CLIMATOLOGY
(3) TPAC (Extrapolation and Climatology Blend)
(4) TYAN78 (Analog)
(5) Cosmos (Model Output Statistics)
(6) OTCM (Dynamical Model)
(7) NTCM (Nested Grid Dynamical Model)
(8) TAPT (Empirical)
b. INTENSITY
(1) THETA E (Empirical)
(2) DVORAK (Empirical)
(3) CLIMATOLOGY
(4) WIND RADIUS (Analytical)

6. FORECAST PROCEDURES

a. INITIAL POSITIONING

The warning position is the best estimate of the center of the surface circulation at synoptic time. It is estimated from an analysis of all fix information received up to one and one-half hours after synoptic time. This analysis is based on a semi-objective weighting of fix information based on the historical accuracy of the fix platform and the meteorological features used for the fix. The interpolated warning position reduces the weighting of any single fix and results in a more consistent movement and a warning position that is more representative of the larger-scale circulation. If the fix data is not available due to reconnaissance platform malfunctions or communication problems, synoptic data or extrapolation from previous fixes are used.

b. TRACK FORECASTING

A preliminary forecast track is developed based on an evaluation of the rationale behind the previous warning and the guidance given by the most recent set of objective techniques and numexical prognoses. This preliminary track is then subjectively modified based on the following considerations:
(1) The prospects for recurvature or erratic movement are evaluated. This evaluation is based primarily on the present and forecast positions and amplitudes of the middle-tropospheric, mid-latitude troughs and ridges as depicted on the latest upperair analysis and numerical forecasts.
(2) Determination of the best steering level is partly influenced by the maturity and vertical extent of the tropical cyclone. For mature tropical cyclones located south of the subtropical ridge, forecast changes in speed of movement are closely correlated with anticipated changes in the intensity or relative position of the ridge. When steering currents are relatively weak, the tendency for tropical cyclones to move northward due to internal forces is an important consideration.
(3) Over the 12- to 72-hour forecast period, speed of movement during the early forecast period is usually biased towards persistence, while the subsequent forecast periods are biased toward objective techniques. When a tropical cyclone moves poleward, and toward the mid-latitude steering currents, speed of movement becomes increasingly more biased toward a selective group of objective techniques capable of estimating significant increases in speed of movement.
(4) The proximity of the tropical cyclone to other tropical cyclones is closely evaluated to determine if there is a possibility of interaction.

A final check is made against climatology to determine whether the forecast track is reasonable. If the forecast deviates greatly from one of the climatological tracks, the forecast rationale may be reappraised.

C. INTENSITY FORECASTING

In this parameter, heavy reliance is placed on intensity trends from aircraft reconnaissance reports, wind and pressure data from ships and land stations in the vicinity of the tropical cyclone, the Dvorak satellite empirical model and climatology. An evaluation of the entire synoptic situation is made, including the location of major troughs and ridges, the position and intensity of any nearby tropical upper-tropospheric troughs (TUTT's), the vertical and horizontal extent of the tropical cyclone's circulation and the extent of the associated upper-level outflow pattern. An essential element affecting each intensity forecast is the accompanying forecast track and the influence of environmental parameters along that track, such as terrain influences, vertical wind shear, and the existence of an extratropical environment.

Once the forecast intensities have been derived, the horizontal distribution of surface winds (winds greater than 30-, 50-,
and 100 -knots) is determined. The most recent wind radii and associated asymmetrics are deduced from all available surface wind observations and reconnaissance aircraft reports. Based on the current surface wind distribution, preliminary estimates of future wind radii are provided by an empirically derived objective technique. These estimates may be subjectively modified based upon the anticipated interaction of the tropical cyclone's circulation with forecast locations of large-scale wind regimes and significant landmasses. Other factors including the tropical cyclone's speed of movement and possible extratropical transition are considered.

7. WARNINGS

Tropical cyclone warnings are issued when a closed circulation is evident and maximum sustained winds are forecast to increase to 34 knots (18 meters per second) within 48 hours, or if the tropical cyclone is in such a position that life or property may be endangered within 72 hours. Warnings may also be issued in other situations if it is determined that there is a need to alert military or civil interests to conditions which may become hazardous in a short period of time.

Each tropical cyclone warning is numbered sequentially and includes the following information: the position of the surface center; estimate of the position accuracy and the supporting reconnaissance (fix) platforms; the direction and speed of movement during the past six hours; and the intensity and radial extent of surface winds over $30^{-}, 50-$, and $100-\mathrm{knots}$, when applicable. At forecast intervals of 12-, 24-, 48-, and 72-hours, information on the tropical cyclone's anticipated position, intensity and wind radii are also provided. Starting on 1 July 1984, vectors indicating the mean direction and mean speed between forecast positions were also included in all warnings.

Warnings in the western North Pacific and North Indian Ocean are issued every six hours valid at standard times (00002, 06002, 12002, and 18002). All warnings are released to the communications network no earlier than synoptic time and no later than synoptic time plus two and one-half hours so that recipients will have a reasonable expectation of having all warnings "in hand" by synoptic time plus three hours (03002, 09002, 2500z, and 21002).

Warning forecast positions are later verified against the corresponding "best track" positions (obtained during detailed post-storm analysis to determine the actual path of the cyclone). A summary of the verification results from 1984 is presented in Chapter IV.

8. PROGNOSTIC REASONING MESSAGES

For tropical storms and typhoons in the western North Pacific Ocean, prognostic reasoning messages are transmitted following the 00002 and 12002 warnings, or whenever the forecast reasoning is no longer valid. This plain language message is intended to provide meteorologists with the reasoning behind the latest JTWC forecast.

In addition to this message, prognostic reasoning information applicable to all customers is provided in the remarks section of warnings when significant forecast changes are made or when deemed appropriate by the TDO.

9. TROPICAL CYCLONE FORMATION ALERT

Tropical Cyclone Formation Alerts (TCFAs) are issued whenever interpretation of satellite imagery and other meteorological data indicates that the formation of a significant tropical cyclone is likely. These formation alerts will specify a valid period not to exceed 24 hours and must
either be cancelled, reissued, or superseded by a tropical cyclone warning prior to the expiration of the valid time.

10. SIGNIFICANT TROPICAL WEATHER ADVISORY

This product contains a general, nontechnical description of all tropical disturbances in the JTWC area of responsibility and an assessment of their potential for further (tropical cyclone) development. In addition, all tropical cyclones in warning status are briefly discussed. This message is issued at 0600 z daily and is valid for a 24 hour period. It is reissued whenever the situation warrants. For each suspect area, the words "poor", "fair", and "good" will be used to describe the potential for further development. "Poor" will be used to describe a tropical disturbance that is not expected to require a TCFA during the advisory period; "Fair" will be used to describe a tropical disturbance that is currently not covered by a TCFA, but for which it is likely that a TCFA will be issued during the advisory period; and "Good" will be used when the tropical disturbance is covered by a TCFA.

CHAPTER II - RECONNAISSANCE AND FIXES

1. GENERAL

The Joint Typhoon Warning Center depends on reconnaissance to provide necessary, accurate, and timely meteorological information in support of each warning. JTWC relies primarily on three reconnaissance platforms: aircraft, satellite, and radar. In data rich areas synoptic data are also used to supplement the above. Optimum utilization of all available reconnaissance resources is obtained through the Selective Reconnaissance Program (SRP); various factors are considered in selecting a specific reconnaissance platform including capabilities and limitations, and the tropical cyclone's threat to life and property both afloat and ashore. A summary of reconnaissance fixes received during 1984 is included in Section 6 of this chapter.

2. RECONNAISSANCE AVAILABILITY

a. Aircraft

Aircraft weather reconnaissance for the JTWC is performed by the 54 th Weather Reconnaissance Squadron (54th WRS) located at Andersen Air Force Base, Guam. The 54th WRS is presently equipped with six WC-130 aircraft and, from July through October, is augmented by three additional aircraft from the 53 rd WRS, Keesler Air Force Base, Mississippi, bringing the total number of available aircraft to nine. The JTWC reconnaissance requirements are provided daily to the Tropical Cyclone Aircraft Reconnaissance Coordinator (TCARC), who marries the tasking from the JTWC with the available airframes from the 54 th WRS.

As in previous years, aircraft reconnaissance provided direct measurements of height, temperature, flight-level wind.s, sea-level pressure, estimated surface winds (when observable), and numerous additional parameters. The meteorological data are gathered by the Aerial Reconnaissance Weather officer (ARWO) and dropsonde operators of Detachment 3, lst Weather Wing who fly with the 54th WRS. These data provide the Typhoon Drity officer (TDO) with indications of changing tropical cyclone characteristics, radii of associated winds and current tropical cyclone position and intensity. Another important aspect is the availability of the data for research on tropical cyclone analysis and forecasting.

b. Satellite

Satellite fixes from USAF/USN ground sites and USN ships provide day and night coverage in the JTWC area of responsibility. Interpretation of this satellite imagery provides tropical cyclone positions and estimates of current and forecast intensities through the Dvorak technique.
C. Radar

4. SATELLITE RECONNAISSANCE SUMMARY

The Air Force provides satellite reconnaissance support to JTWC using imagery from a variety of spacecraft. The tropical cyclone satellite surveillance network consists of both tactical and centralized facilities. Tactical DMSP sites are located at Nimitz Hill, Guam; Clark AB, Republic, of the Philippines; Kadena AB, Japan; Osan AB, Korea; and Hickam AFB, Hawaii. These sites provide a combined coverage that includes most of the JTWC area of responsibility in the western North Pacific from near the dateline westward to the Malay Peninsula. JTWC relies on the Air Force Global Weather Central (AFGWC) to provide coverage over the remainder of its area of responsibility using stored satellite data. The Naval Oceanography Command Detachment, Diego Garcia, provides NOAA polar orbiting coverage in the central Indian Ocean as a supplement to this support. U. S. Navy ships equipped for direct readout also provided supplementary support.

AFGWC, located at Offutt AFB, Nebraska, is the centralized member of the tropical cyclone satellite surveillance network. In support of JTWC, AFGWC processes stored imagery from DMSP and NOAA spacecraft. Imagery processed at AFGWC is recorded onboard the spacecraft as it passes over the earth. Later, these data are downlinked to AFGWC via a network of command/readout sites and communication satellites. This enables AFGWC to obtain the coverage necessary to fix all tropical systems of interest to JTWC. AFGWC has the primary responsibility to provide tropical cyclone surveillance over the entire Indian Ocean, southwest Pacific, and portions of the western North Pacific on both sides of the dateline. Additionally, AFGWC can be tasked to provide tropical cyclone positions in the entire western North Pacific as backup to coverage routinely available in that recion.

The hub of the network is Det 1 , IWw, colocated with JTWC on Nimitz Hill, Guam. Based on available satellite coverage, Det 1 coordinates satellite reconnaissance requirements with JTWC and tasks the individual network sites for the necessary tropical cyclone fixes. Therefore, when a position from a polar-orbiting satellite is required as the basis for a warning, called a "levied fix", a dual-site tasking concept can be applied. Under this concept, two sites are tasked to fix the tropical cyclone from the same satellite pass. This provides the necessary redundancy to virtually guarantee JTWC a successful satellite fix on the tropical cyclone. Using this dual-site concept, the satellite reconnaissance network is capable of meeting all of JTWC's levied satellite fix reguirements.

The network provides JTWC with several products and services. The main service is one of surveillance. Each site reviews its daily satellite coverage for indications of tropical cyclone development. If an area exhibits the potential for development, JTWC is notified. Once JTWC issues either a formation alert or warning, the network is tasked to provide three products: tropical cyclone positions, intensity estimates, and 24-hour intensity forecasts. Satellite tropical cyclone positions are assigned position code numbers (PCN) depending on the availability of geography for precise gridding, and the degree of organization of the tropical cyclone's cloud system (Table 2-2). During 1984, the network provided JTWC with a total of 1971 satellite fixes on tropical systems in the western North Pacific. Another 184 fixes were made for tropical systems in the North Indian Ocean. A comparison of those fixes made on numbered tropical cyclones in the western North Pacific with their corresponding JTWC best track positions is shown in Table 2-3. Estimates of the tropical cyclone's current intensity and 24-hour intensity forecast are

NOAA 7 (1529 LST)A

NOAA 8 (0737LST)D
$17540(\text { F6 })^{\circ}(0612$ LST)A

18541 (F7) (1010 LST)A

LST = Local Sun Time

- = DMSP Spacecraft
\rightarrow = Operational
made once each day by applying the Dvorak technique (NOAA Technical Memorandum NESDIS 45 as revised) to visual imagery. A similar technique using enhanced infrared imagery is under development.

Four polar orbiters were available throughout the season. Figure 2-1 shows the status of operational polar orbiters. NOAA 6 was reactivated a year after being placed in standby mode (20 June 1983) to compensate for the untimely loss of NOAA 8. Although not shown NOAA 9 was successfully launched on 12 December and should be of benefit in 1985.

B. RADAR RECONNAISSANCE SUMMARY

Fourteen of the 30 significant tropical cyclones in the western North Pacific during 1984 passed within range of land based radar with sufficient cloud pattern organization to be fixed. The land radar fixes that were obtained and transmitted to JTWC totaled 510. Two radar fixes were obtained by reconnaissance aircraft.

The WMO radar code defines three categories of accuracy: good (within 10 km (5 nm)), fair (within 10 to 30 km (5 to 16 nm)), and poor (within 30 to 50 km (16 to 27 nm)). This year 510 radar fixes were coded in this manner; 167 were good, 156 were fair, and 187 poor. Compared to the JTWC best track, the mean vector deviation for land radar sites was 20 nm (37 km). Excellent support through timely and accurate radar fix positioning allowed JTWC to track and forecast tropical cyclone movement through even the most difficult erratic tracks.

As in previous years, no radar reports were received on North Indian Ocean tropical cyclones.

1 EYE/GEOGRAPHY
2 EYE/EPHEMERIS
3 WELL DEFINED CC/GEOGRAPHY
WELL DEFINED CC/EPHEMERIS
POORLY DEFINED CC/GEOGRAPHY
POORLY DEFINED CC/EPHEMERIS

6. TROPICAL CYCLONE FIX DATA

A total of 2918 fixes on 30 western North Pacific tropical cyclones and 193 fixes on four North Indian Ocean tropical cyclones were received at JTWC. Table 2-4, Fix Platform Summary, delineates the number of fixes per platform for each individual tropical cyclone. Season totals and percentages are also indicated.

Annex A includes individual fix data for each tropical cyclone. Fix data are divided into four categories: Satellite, Aircraft, Radar, and Synoptic. Those fixes labeled with an asterisk (*) were determined to be unrepresentative of the surface center and were not used in determining the best tracks. Within each category, the first three colums are as follows:

FIX NO. - Sequential fix number
TIME (Z) - GMT time in day, hours and minutes

FIX POSITION - Latitude and longitude to the nearest tenth of a degree

TABLE 2-3. MEAN DEVIATION (NM) OF ALL SATELLITE DERIVED TROPICAL CYCLONE POSITIONS FROM THE JTWC BEST TRACK POSITIONS. NUMBER OF CASES (IN PARENTHESES).

PCN	WESTERN NORTH PACIFIC OCEAN				NORTH INDIAN OCEAN			
	1972-1983 AVERAGE			1984	1980-1983			1984
	(ALL	SITES)	(ALI	SITES)	(ALL	SITES)	(ALL	SITES)
1	13.7	(1843)	12.4	(119)	16.2	(27)	17.8	(13)
2	17.3	(802)	15.7	(97)	9.0	(4)	32.1	(3)
3	20.3	(2691)	23.6	(259)	21.8	(11)	19.0	(2)
4	23.1	(999)	25.1	(134)	21.8	(5)	136.0	(3)
5	36.8	(4395)	43.6	(317)	33.1	(87)	36.5	(84)
6	40.9	(2298)	42.4	(265)	35.1	(83)	62.7	(23)
$1 \& 2$	14.4	(2645)	13.9	(216)	15.5	(31)	20.5	(16)
3\&4	20.9	(3690)	24.1	(393)	26.3	(16)	89.2	(5)
5\&6	38.0	(6693)	43.0 .	(582)	32.2	(170)	42.2	(107)
TOTAL NUMBER								
OF CASES		(13028)		(1191)		(217)		(128)

TABLE 2-4. FIX PLATFORM SUMMARY FOR 1984							
WESTERN NORTH PACIFIC			FIX PLATform summary				
			AIRCRAFT	SATELLITE	RADAR	SYNOPTIC	TOTAL
	VERNON	(01W)	--	26	--	--	26
TS	WYNNE	(02W)	23	103	37	3	166
	ALEX	(03W)	5	40	34	3	82
	BETty	(04W)	2	62	31	--	95
TY	CARY	(05W)	29	85	--	--	114
TY	DINAH	(06W)	28	85	--	--	113
	ED	(07w)	19	82	102	--	203
	FREDA	(08W)	5	39	12	--	56
TD	09W	(09W)	2	63	--	--	65
	GERALD	(10w)	9	68	52	3	132
	Holly	(11W)	21	81	117	1	220
	12W	(12W)	2	19	--	--	21
	IKE	(13W)	33	110	38	3	184
	JUNE	(14W)	7	46	14	--	67
	RELLY	(15W)	11	57	--	--	68
TS	LYNN	(16W)	--	41	--	2	43
	MAURY	(17W)	13	23	--	--	36
	NINA	(18W)	2	34	2	--	38
TY	OGDEN	(19W)	9	42	--	--	51
TY	PhYLLIS	(20W)	10	37	--	--	47
TS	ROY	(21w)	6	26	--	--	32
TS	susan	(22W)	-	26	--	--	26
TD	23W	(23W)	1	11	--	--	12
	THAD	(24W)	14	60	--	--	74
STY	VANESSA	(25W)	27	114	13	--	154
TY	WARREN	(26W)	22	112	12	1	147
TY	AGNES	(27W)	19	108	4	--	131
STY	BILL	(28W)	46	163	44	--	253
	clara	(29W)	28	93	--	2	123
TY	DOYLE	(30W)	24	115	--	--	139
total			417	1971	512	18	2918
o of total NR OF FIXES			14.3	67.6	17.5	. 6	100.0
INDIAN OCEAN			SATELLITE			SYNOPTIC	TOTAL
TC 01A				18		-	18
TC 02B				40		2	42
TC 038				37		3	40
тC 04B				89		4	93
total				184		9	193
$\%$ OF TOTAL				95.3		4.7	100.0

Depending upon the category, the remainder of the format varies as follows:
a. Satellite
(1) ACCRY - Position Code Number is used to indicate the accuracy of the fix position. A "l" or "2" indicates relatively high accuracy and a "5" or "6" relatively low accuracy.
(2) DVORAK CODE - Intensity evaluation and trend (Figure 2-2, Table 2-5). (For specifics, refer to NOAA TM; NESDIS 45).
(3) COMMENTS - For explanation of abbreviations, see Appendix I.
(4) SITE - ICAO call sign of the specific satellite tracking station.

b. Aircraft

(1) FLT LVL - The constant
pressure surface level, in millibars or altitude, in feet, maintained during the penetration. The normal level flow in developed tropical cyclones, due to turbulence factors, is 700 mb . Low-level missions are normally flown at $1500 \mathrm{ft}(457 \mathrm{~m})$.
(2) 700 MB HGT - Minimum height of the 700 mb pressure surface within the vortex recorded in meters.
(3) OBS MSLP - If the surface center can be visually detected (e.g.. in the eye), the minimum sea-level pressure is obtained by a dropsonde release above the surface vortex center. If the fix is made at the 1500-foot level, the sea level pressure is extrapolated from that level.
(4) MAX-SFC-WND - The maximum surface wind (knots) is an estimate made by the ARWO based on sea state. This observation is limited to the region of the flight path and may not be representative of the entire tropical cyclone. Availability of data is also dependent upon the absence of undercast conditions and the presence of adequate illumination. The positions of the maximum flight level wind and the maximum observed surface wind do not necessarily coincide.
(5) MAX-FLT-LVL-WND - Wind speed (knots) at flight level is measured by the AN/APN 147 droppler radar system aboard the wC-130 aircraft. This measurement may not represent the maximum flight level wind associated with the tropical cyclone because the aircraft only samples those portions of the tropical cyclone along the flight path. In many instances, the flight path is through the weak sector of the tropical cyclone. In areas of heavy rainfall, the doppler radar may track energy reflected from precipitation rather than from the sea surface, thus, preventing accurate wind speed measurement. In obvious cases, such erroneous wind data will not be reported. In addition, the doppler radar system on the WC-130 restricts wind measurements to drift angles less than or equal to 27 degrees if the wind is normal (perpendicular) to the aircraft heading.

Figure 2-2. The current T-number is 3.5 but the current intensity estimate is 4.5 lequivalent to 71 kt]. The cloud system has weakened by 1.5 T numbers since the previous evaluation conducted 24 hours earlier. The plus $1+1$ symbol indicates an expected reversal of the weakening trend on very little further weakening of the tropical cyclone during the next 24-hour period.

TABLE 2-5. MAXIMUM SUSTAINED WIND SPEED (KT) AS A FUNCTION OF DVORAK CI \& FI (CURRENT \& FORECAST INTENSITY) NUMBER AND MINIMUM SEA LEVEL PRESSURE (MSLP)			
TROPICAL CYCLONE	WIND		MSLP
INTENSITY NUMBER	SPEED	(NW	PACIFIC)
0.0	<25		--
0.5	25		--
1.0	25		--
1.5	25		--
2.0	30		1003
2.5	35		999
3.0	45		994
3.5	55		988
4.0	65		981
4.5	77		973
5.0	90		964
5.5	102		954
6.0	115		942
6.5	127		929
7.0	140		915
7.5	155		900
8.0	170		884

(6) ACCRY - Fix position accuracy. Both navigational (OMEGA and LORAN) and meteorological (by the ARWO) estimates are given in nautical miles.
: (7) EYE SHAPE - Geometrical representation of the eye based on the aircraft radar presentation. The eye shape is reported only if the center is 50 percent or more surrounded by wall cloud.
(8) EYE DIAM/ORIENTATION -

Diameter of the eye in nautical miles. When an elliptical eye is present, the lengths of the major and minor axes and the orientation of the major axis are respectively listed. When concentric eye walls are present, each diameter is listed.
c. Radar
(1) RADAR - Specific type of
platform (land, aircraft, or ship) utilized for fix.
(2) ACCRY - Accuracy of fix position (good, fair, or poor) as given in the wMO ground radar weather observation code (FM2O-V).
(3) EYE SHAPE - Geometrical representation of the eye given in plain language (circular, elliptical, etc.).
(4) EYE DIAM - Diameter of eye given in kilometers.
(5) RADOB CODE - Taken directly from WMO ground weather radar observation code FM20-V. The first group specifies the vortex parameters, while the second group describes the movement of the vortex center.
(6) RADAR POSITION - Latitude and longitude of tracking station given in tenths of a degree.
(7) SITE - WMO station number of the specific tracking station.

CHAPTER III - SUMMARY OF TROPICAL CYCLONES

1. WESTERN NORTH PACIFIC TROPICAL CYCLONES

During 1984, the western North Pacific experienced the sixth consecutive year of below average tropical cyclone activity. Thirty tropical cyclones occurred in 1984, one less than the annual average. Only three significant tropical cyclones failed to develop beyond the tropical depression (TD) stage and eleven tropical storms (TS) failed to reach typhoon intensity. of the 16 tropical cyclones that developed to typhoon (TY) intensity, two reached the $130 \mathrm{kt}(67 \mathrm{~m} / \mathrm{s})$ intensity necessary to be classified as super typhoons (STY). In the western North Pacific, tropical cyclones reaching tropical storm intensity or greater are assigned names in alphabetical order
from a list of alternating male/female names (refer to Appendix III). Table 3-1 provides a summary of key statistics for all western North Pacific tropical cyclones. Each tropical cyclone's maximum surface wind (in knots) and minimum sea level pressure (in millibars) were obtained from best estimates based on all available data. The distance traveled (in nautical miles) was calculated from the JTWC official best tracks (see Annex A).

Table 3-2 through 3-5 provide further information on the monthly and yearly distribution of tropical cyclones and statistics on Tropical Cyclone Formation Alerts and Warnings.

TABLE 3-1. WESTEERN NORIH PACIFIC

1984 SIGNIFICANT TROPICAL CYCLONES

TROPICAL STORMS	0	0	0	0	0	2	1	3	3	2	0	0	11	10.0	259
TYPHOONS	0	0	0	0	0	0	4	2	1	5	3	1	16	17.3	451

ALL TROPICAL
CYCLONES
0000
\qquad
${ }^{3}$
\qquad
1959-1984

| AVERAGE | .5 | .3 | .7 | .8 | 1.3 | 2.0 | 4.9 | 6.3 | 5.7 | 4.6 | 2.7 | 1.4 | 31.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| CASES | 13 | 8 | 18 | 22 | 33 | 51 | 127 | 163 | 148 | 119 | 70 | 36 | 808 |

FORMATION ALERTS:
30 of 37 Formation Alerts developed into significant tropical cyclones. Tropical Cyclone Formation Alerts were issued for all significant tropical cyclones that developed in 1984.

WARNINGS:

Number of warning days:
Number of warning days with
two tropical cyclones in region:
46
Number of warning days with three
or more tropical cyclones in region:
4

NOCC GUM 3142/20 (KEW 5-80)

WOCC GUAN 3142/20 (MEN 5-80)

The formation of Tropical Storm Vernon marked the start of the western Pacific tropical cyclone season. This is the second year in a row that the first tropical cyclone of the season did not develop until June, and the first time since JTWC was established that two consecutive seasons have started so late in the year.

Tropical Storm Vernon was very similar to its 1983 season opening counterpart Tropical Storm Sarah, in that it formed in the South China Sea during June, developed into a weak Tropical Storm, and made landfall in central Vietnam.

The disturbance which was to develop into Tropical Storm Vernon was first detected early on 7 June as an area of poorly organized convection on the eastern end of the monsoon trough in the central South China Sea. The disturbance drifted slowly to the northwest and consolidated during the next 24 hours. At 04112 on the 8 th, a TCFA was issued based on improved organization of the convection and synoptic data which indicated the disturbance had a closed surface circulation with winds of 15 to 25 kt (8 to $13 \mathrm{~m} / \mathrm{s}$). Vernon continued moving to the northwest at 5 kt
($9 \mathrm{~km} / \mathrm{hr}$) and at 0000 Z on the 9 th the first warning was issued based on numerous 25 to 30 kt (13 to $15 \mathrm{~m} / \mathrm{s}$) ship reports. The MSIP at this time was near. 999 mb .

Over the next 18 hours Vernon's forward speed doubled to 10 kt ($19 \mathrm{~km} / \mathrm{hr}$) as the storm intensified, attaining tropical storm strength between 00002 and $0600 z$ on the 9 th and reaching a maximum intensity of 40 kt ($21 \mathrm{~m} / \mathrm{s}$) approximately 6 to 9 hours later (Figure 3-01-1).

Vietnamese authorities reported that Vernon caused flooding of rice, sweet potato. and sesame crops in the Quang Nam-Danang province. No loss of life or other significant property damage was reported.

After reaching maximum intensity, Vernon moved in a more westerly direction at 12 kt ($22 \mathrm{~km} / \mathrm{hr}$), and began to weaken as the storm entered a strong shearing environment. Vernon continued toward the coast of Vietnam, making landfall just north of Da Nang (WMO 48855) at approximately 101200z. By this time most of Vernon's convection was sheared to the west of the low-level circulation. Vernon quickly dissipated over land.

Figure 3-01-1. Tropical Storm Vernon with exposed low-revel circulation as it attains tropical storm intensity 10903162 June OMSP visual imagery).

After Tropical Storm Vernon (QIW) dissipated over Vietnam, the southwest monsoon was slow to re-establish itself. Surface ridging from an anticyclone over the northern Philippine Sea and later from a 1030 mb high east of Japan kept easterlies in the Philippine Sea and across Luzon until the 14 th of June. By then the ridge east of Japan had moved far enough east to allow a weak southwest monsoon to become established from the South China Sea eastward into the Philippine Sea. This set the stage for the development of Tropical Storm Wynne.

The disturbance which developed into the second storm of the season was first detected late on 16 June in the northern Philippine Sea as an area of concentrated convection embedded in the southwest monsoon. By 17 June a broad, weak surface circulation had developed near 20N 137E with an MSLP of 1005 mb and 10 to 20 kt (5 to $10 \mathrm{~m} / \mathrm{s}$) surface winds. The organization of the convection continued to improve, prompting the issuance of a TCFA at $1600 z$ on the 18th. At that time, synoptic data indicated a weak upper-level anticyclone had developed aloft providing good outflow to the south and west. Late on the l8th, the first aircraft reconnaissance flight into the disturbance found a 6 nm (ll km) wide surface center with an MSLP of 998 mb and maximum surface winds of 20 kt (10 m / s). At 190933 z the first warning on Wynne, valid at 1906002 , was issued.

Wynne maintained a predominantly westward track throughout its life. The storm was steered by the westward flow along the southern side of the mid to low-level subtropical ridge. This ridge was apparently too narrow to be resolved by JTWC's primary forecast aid, the One-Way Interactive Tropical Cyclone Model (OTCM). As a result, OTCM repeatedly predicted a northward track for the storm. By the second warning, JTWC forecasters had noticed this apparent problem with OTCM and began forecasting a more westward track than OTCM indicated.

On 19 June a mid-latitude trough passed to the north of Wynne causing Wynne to turn briefly to the northwest. However, the trough did not weaken the subtropical ridge enough to allow for recurvature. After the trough passed on the 20th, Wynne once again resumed its westward heading which it maintained until landfall.

Despite the five days Wynne remained in the Philippine Sea east of Taiwan, it did not intensify beyond $55 \mathrm{kt}(28 \mathrm{~m} / \mathrm{s})$. The weak upper-level anticyclone which developed over Wynne on the l8th remained very small, being overshadowed by a much larger upper-lével anticyclone to the north over mainland China. Therefore, Wynne remained under a strong shearing environment from the north and northeast throughout its life, which hindered intensification.

NR: 187 WAYNE TH1 4 ?.6.23. 1900 Z FFAA $2319046744482181 / 2021061252613$ QP: WANG
Figure 3-02-1. Tropical Storm Wynne as it passed south of Taiwan as seen by radar from Kaohsuing
(am0 46744) at 2319002 June (Photograph courtesy of Central Weather Bureau, Taipei, Taiman).

Figure 3-02-2. Wynne as a $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ tropical storm entering the south China Sea 12401362 June DMSP visual imageryl.

Wynne strengthened to $55 \mathrm{kt}(28 \mathrm{~m} / \mathrm{s})$ just prior to passing the southern coast of Taiwan. The sea level pressure of Lanyu (WMO 46762), located just east of the southern tip of Taiwan, dropped 14 mb in the 12 hours preceeding the storm's arrival, reaching 984 mb with Wynne's passage. As Wynne passed the southern tip of Taiwan (Figure 3-02-1), its low-level circulation was disrupted causing Wynne to weaken slightly as it entered the South China sea (Figure 3-02-2).

Wynne passed $70 \mathrm{~nm}(130 \mathrm{~km})$ south of Hong Kong (WMO 45005) about 24 hours after passing the southern tip of Taiwan. By this time Wynne had intensified to its peak intensity of $60 \mathrm{kt}(31 \mathrm{~m} / \mathrm{s})$. This was confirmed by the USS Mauna Kea (AE22) which inadvertently passed very close to Wynne's center and reported "maximum winds to 60 kt , gusts to $70 \mathrm{kt}$. " Fortunately, no damage or
personnel injuries were reported aboard the Mauna Kea. Further north, Hong Kong reported gusts to $60 \mathrm{kt}(31 \mathrm{~m} / \mathrm{s})$ with the passage of Wynne.

As Wynne traversed the Philippine Sea and the northern Luzon Straits, the southwest monsoon was enhanced producing 20 to 30 kt (l0 to $15 \mathrm{~m} / \mathrm{s}$) winds, high seas and heavy rainfall. In Luzon, at least 20 families were reported left homeless and $10,000 \mathrm{hec}$ tares of riceland destroyed by floods. North of Luzon, three fishermen drowned when their boats capsized in heavy seas.

Tropical Storm Wynne made landfall at approximately 1200 z on the 25 th on the coast of the People's Republic of China near the Luichow Peninsula, and weakened rapidly as it moved inland. The final warning on Wynne was issued at 00002 on the 26 th.

Typhoon Alex was the first typhoon of the 1984 western Pacific season. It was also the season's first recurver. The satellite fixes during the formative stages of Alex were somewhat misleading and contributed to rather large forecast errors on the first day in warning status. After reaching typhoon intensity and crossing Taiwan, the last phase of Alex's life was characterized by a complex transition into an extratropical low.

The seedlings of Alex first caught the attention of the JTWC forecasters on the 28th of June. Based on several ship reports showing that a circulation center had developed in the Philippine Sea, the Significant Tropical Weather Advisory (ABEH PGTW) was reissued at 2814152 stating that a 10 to 15 kt (5 to $8 \mathrm{~m} / \mathrm{s}$) surface circulation had developed near 16 N 129E, within a disorganized area of convection in the monsoon trough (point A on Figures 3-03-1 and 3-03-2). This area was identified as one with a "poor" potential for development (meaning the disturbance was not expected to require a TCFA during the advisory period). For the next day-and-a-half the disturbance persisted with no signs of development. At 23012 on the 29 th, visual satellite pictures indicated that a partially exposed low-level circulation had developed on the northern edge of the disturbance (point B on Figures 3-03-1 and 3-03-2). Consequently an aircraft investigation of the area was requested for the following day.

Upon arrival at the invest point, the aircraft radioed back to the JTWC forecaster that a well-defined circulation center was present and that a vortex fix would be forthcoming. Now things happened quickly. The forecaster first notified his customers on Luzon that a tropical depression was developing just to the east of them and they could experience 30 kt ($15 \mathrm{~m} / \mathrm{s}$) winds within 18 hours. At 2300 z on the 30 th a TCFA was issued. Shortly thereafter, at 23382, the vortex fix was radioed to JTWC containing details on the closed surface circulation. The first warning on Alex, valid at 0000 z on 1 July quickly followed.

Unfortunately, the first four warnings forecast Alex to move to the west. Satellite fixes starting late on the 29 th and continuing through 18002 on the lst indicated that the depression was moving west-southwest. Limited radar fixes indicated that the system was nearly stationary. However, when the daylight satellite pictures became available late on 1 July, it was obvious that the system had in reality moved north-northwest (along track CD in Figure 3-03-2) and was now a tropical storm. Thus it was not until warning number five that the westward track was abandoned and not until warning number seven that the recurvature scenario was fully developed.

The rationale behind the forecast track on warning number one now becomes instructive: When the system was first detected "on the doorstep" of Luzon, there

Figure 3-03-1. Initially the exposed low-level circulation center at point B was thought to be the origin of Typhoon Alex. However, post-analysis indicates the actual point of origin was probably near point A (2923012 June NOAA visual imagery).

Figure 3-03-2. Point A is believed to be the actual point of origin of Typhoon Alex; Point B is the position of the partially exposed low-level circulation center, initially thought to be the origin of Alex; Point C is the location of the center found by the first aircraft invest; Point D is the best track through 0212002, and point E is the 72 hour forecast from warning number one.

Figure 3-03-3. Mid-tropospheric flow prevailing during the formulation of the first warning forecast reasoning IStreamline analys is of the FNOC 400 mb NUA wind field valid at 3012002 June).

Figure 3-03-4. The mid-tropospheric sunoptic situation prevailing during most of the life of Typhoon Alex. Note the antiayclone which has moved east to the south of Japan and the trough over central China which is also moving eastward IStreamline analysis of the FNOC NOGAPS 500 mb wind field valid at 0212002 Jul yl.
was an urgency to let the people there know that the potential existed for a tropical cyclone to affect them almost immediately. Therefore it was deemed necessary to devise the forecast track before all of the JTWC forecast aids could be obtained. Available to the forecaster were the past fixes which lead to best track $B C$ on Figure 3-03-2 and a synoptic situation characterized by a midtropospheric ridge north of the storm as illustrated in Figure 3-03-3. Given the present and past position of the storm and the northeasterly flow across Luzon, a westward forecast with recurvature beyond the 72 hour point seemed logical. This scenario was briefed to all concerned. When the forecast aids did arrive, they generally agreed with this reasoning. One of the aids which did not agree was the One-Way Interactive Cyclone Model (OTCM), JTWC's primary forecast aid, which forecast Alex to move to the north-northwest to near point D in Figure 3-03-2 in twenty-four hours. The OTCM forecast was discounted for three reasons. First, it was perpendicular. to the mid-tropospheric flow and headed toward the center of the ridge near Taiwan. Second, the track BCD seemed highly improbable. Finally, OTCM had consistently and erroneously forecast a westward moving storm (Tropical Storm Wynne (02w)) to go to the north only a week earlier in the same general area.

As it turned out, the OTCM forecast was excellent. Figure 3-03-4 reflects the new synoptic situation. The anticyclone that had been over Taiwan did not persist as originally anticipated but weakened and moved to the east. This movement allowed Alex to accelerate to the north-northwest towards Taiwan. The OTCM had correctly forecast this to occur. With the postanalysis knowledge that Alex did not transit the Philippines, but instead went northnorthwest, Figure 3-03-2 should be examined for an explanation of the true origin of Alex. The track BCD seems highly improbable There is currently no explanation for a path from B to C at a speed of nearly 10 kt (19 $\mathrm{km} / \mathrm{hr})$, a slow down to $3 \mathrm{kt} \mathrm{(} 6 \mathrm{~km} / \mathrm{hr}$) at C

Figure 3-03-5. Typhoon Alex just prior to attaining maximum intensity (0223292' Iuly NOAA visual imagery):
followed by a sudden 120 degree turn to the right and an acceleration to $12 \mathrm{kt}(22 \mathrm{~km} / \mathrm{hr})$ by point D. A much more likely path would be genesis near point A, as was indicated by synoptic data back on 28 June, westward movement at about $5 \mathrm{kt}(9 \mathrm{~km} / \mathrm{hr})$ to C and then a more gradual turn to the right with acceleration to D. Consequently it is now thought that the low-level circulation center found by satellite imagery at point B on the 29th of June was a "red-herring"; nothing more than an eddy in the monsoon trough.

Once the northward movement of Alex was well established, the forecasts were relatively accurate (although the speeds were somewhat slow). The only question was whether Alex would track up the east coast of Taiwan, cross the middle of the East Cnina Sea and transit through the Korean Strait, or transfer across Taiwan, move along the coast of mainland China and cross South Korea. By warning number 11 this question was correctly resolved as the last eight warnings had excellent track forecasts. Alex continued to intensify reaching a maximum intensity of $75 \mathrm{kt}(39 \mathrm{~m} / \mathrm{s})$ just prior to crossing Taiwan (Figures 3-03-5 and 3-03-6). During the middle and last phases of Alex's life, the southwesterlies in front of a trough that laid over central Korea provided the steering mechanism. This trough with its associated surface front was the same trough observed over northern China in Figure 3-03-4 several days earlier. Starting on 5 July Alex underwent a complex extratropical transition with this front. The final warning was issued at 0512002 as Alex became indistinguishable from the frontal system over the Sea of Japan.

In summary, Typhoon Alex can be identified as a typical, well-behaved recurver that transitioned into an extratropical system. The first four warnings were marred by erroneous rejection of OTCM, and by acceptance of early fixes from a feature that was probably not part of the genesis mechanism.

Figure 3-03-6. Typhoon Alex just prion to attaining maximum intensity as seen by radar from Kaohsuing (1 MO 46744) at 0223002 July (Photograph courtesy of Central Weather Eureau, Taipei, Taiwanl.

Tropical Storm Betty originated in the eastern extension of the monsoon trough early in July but took several days to develop into a significant tropical cyclone. Once developed, Betty moved steadily to the northwest through the South China Sea eventually making landfall and dissipating over southern China.

At 0000 z on the 2 nd , a disturbance which later developed into Tropical Storm Betty was located approximately 550 nm (1019 km) southwest of Guam. Synoptic data showed the disturbance to be a broad, weak surface circulation with winds of 10 to 15 kt (5 to $8 \mathrm{~m} / \mathrm{s}$). Concurrent satellite imagery showed the disturbance as an area of poorly organized convection. Strong surface ridging was present between the disturbance and the developing Tropical Storm Alex (03W) to the north which was then located off the east coast of Luzon. Above this surface ridging a TUTT was providing good upper-level outflow to the north of the disturbance enhancing the convective activity.

When the disturbance was mentioned on the 0306002 Significant Tropical Weather Advisory (ABEH PGTW), it had moved northwest behind now typhoon Alex (03W) which was located east of Taiwan and moving rapidly northward. With the TUTT providing good upper-level outflow over the disturbance, the convection exhibited a marked increase in organization and intensity over 24 hours earlier.

By 02002 on the 4 th, the disturbance had moved to near 15 N 128 E and was becoming more organized. At this time the first TCFA was issued on the system. Figure 3-04-1 shows the disturbance at the time the TCFA was issued. Note the banding in the convection and anticyclonic upper-level outflow. Synoptic data indicated that only a broad 10 to 15 kt (5 to $8 \mathrm{~m} / \mathrm{s}$) surface circulation was present. Strong ridging still persisted north of the disturbance. This ridging was instrumental in preventing Betty from following a path similar to that of Typhoon Alex (03W).

Figure 3-04-1 Tropical storm Betty at the time the first TCFA was issued 10401162 July DMSP visual imagery.

Aircraft reconnaissance flights on 3 and 4 July at the $1500 \mathrm{ft}(457 \mathrm{~m})$ level were unable to close-off a circulation center, finding instead a broad surface trough. The TCFA was reissued at 0502002 July since the possibility existed that the system would remain east of Luzon and develop. Aircraft reconnaissance during the afternoon of the 5th indicated that the system had intensified slightly into a weak tropical depression with an MSLP of 1002 mb and maximum surface winds of $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$. However, no further development occurred as the system moved west and approached the Philippines.

By the 6th, the depression had weakened as it transited Luzon. At this time the third and final TCFA was issued since it was considered likely that a significant tropical cyclone would finally develop once the disturbance moved out over the South China Sea.

At $1200 z$ on the 6th, synoptic data indicated that the disturbance had moved offshore west of Luzon and was developing. With surface reports of 20 to 25 kt (10 to $13 \mathrm{~m} / \mathrm{s}$) and further intensification very likely, the first warning was issued. Visual satellite imagery late on the 6th (Figure 3-04-2) showed Betty, then a depression, with a large, mostly clear area at its center. An exposed low-level circulation is evident as indicated by the spiraling low-level cumulus clouds. Convective activity is heaviest in the southern semicircle surrounding the mostly convection-free center. Aircraft reconnaissance at about the same time reported a large light and variable center 50 to 60 nm (93 to 111 km) in diameter associated with the depression. Surface winds of 25 to 30 kt (13 to $15 \mathrm{~m} / \mathrm{s}$) were ohserved southeast of the center where the depression's flow was enhanced by the southwest monsoon.

Figure 3-04-2. Tropical Starm Betty as a thopical depression after having crossed the Philippines. Note the exposed low-level circulation center as indicated by spiralling cumulus inside a large convection-free central area 10623332 July NOAA visual imagery).

Betty was upgraded to a tropical storm at 12002 on the 7 th based upon receipt of 35 kt ship reports and satellite imagery showing improved convective organization Aircraft reconnaissance at 0800342 indicated that Tropical Storm Betty had intensified further with maximum surface winds of 50 kt ($26 \mathrm{~m} / \mathrm{s}$) being reported in a small area in the east semicircle.

The Hong Kong Royal Observatory (wMO 45005) picked up Betty on weather radar at approximately 080300 Z and transmitted position fixes until 0906002. These hourly reports aided greatly in positioning the tropical storm during this period.

Between $0600 z$ on the 8 th and 06002 on the 9 th , Betty maintained an intensity of 50 to $55 \mathrm{kt}(26$ to $28 \mathrm{~m} / \mathrm{s}$), making landfall at 090300 z approximately $135 \mathrm{~nm}(250 \mathrm{~km}$) west-southwest of Hong Kong. Figure 3-04-3 shows Betty at maximum intensity just prior to landfall. Dissipation occurred after 0918002 over the southwestern portion of the Peoples Republic of China. No forecast problems were encountered with Tropical Storm Betty since it moved steadily to the northwest around the southwestern periphery of the subtropical ridge.

Figure 3-04-3. Thopical Storm Betty at maximum intensity of $55 \mathrm{kt}(28 \mathrm{~m} / \mathrm{s})$ just prior to landfall 10901372 July DMSP visual imagery).

Typhoon Cary was the first storm of the season to be initiated by the Tropical Upper Tropospheric Trough (TUTT) in a manner similar to that described by Sadler (1976). While remaining over water its entire life, cary distinguished itself by unusual intensity changes.

The disturbance which eventually developed into Typhoon Cary was first noticed on the 2nd of July as an area of very poorly organized convection near 18 N 168E in the eastern, divergent side of a westward moving TUTT cell. During the next two days, the convection remained poorly organized as it moved to the west-southwest. Surface synoptic data indicated only easterly trades were present beneath the convection. Early on the 5 th, the convection became more organized with satellite imagery indicating an anticyclone developing aloft over the system; however, due to sparse surface reports, the presence of a surface circulation could not be confirmed. Because of the improved organization, the area of convection was mentioned in the 0506002 Significant Tropical Weather Advisory (ABEH PGTW). Subsequent satellite imagery showed continued development of the convection and the ABEH was reissued at 0512002 indicating that the potential for significant tropical cyclone development was "fair" (meaning that it is likely that a TCFA will be issued during the advisory period). Early on the 6th, satellite imagery (Figure 3-05-1) showed that the convection had become comma shaped, with evidence that a surface circulation was forming. Consequently a TCFA was issued at 0603172. During the following 21 hours the disturbance moved to the westnorthwest, with no significant intensification.

Figure 3-05-1. Satellite imagery which prompted issuance of the TCFA. Note the comma shaped convection and the exposed low-Revel circulation center to the southwest 1060036 I July DMSP visual imagery). $_{\text {I }}$

Aircraft reconnaissance late on the 6 th , had no trouble locating a surface circulation and reported that the disturbance had an MLSP of 1004 mb with estimated maximum surface winds of 25 kt ($13 \mathrm{~m} / \mathrm{s}$). Based on this report, the first warning on Cary was issued at 0000 z on the 7 th. During the next 12 hours, satellite imagery indicated the depression was slowly intensifying. This was confirmed by the next aircraft reconnaissance flight which found Cary had intensified to storm strength with a narrow band of 35 to 40 kt (18 to $21 \mathrm{~m} / \mathrm{s}$) surface winds north of its center and an MSLP of 999 mb .

Cary continued to intensify as it moved to the northwest toward an apparent break in the subtropical ridge. Due to uncertainty in the Fleet Numerical Oceanography Center (FNOC) analysis fields in the data sparse region southeast of Japan, 400 mb synoptic track missions were flown on 8 and 9 July to better define the mid-level flow north of Cary. These flights confirmed the presence of a weakness in the ridge, which indicated that forecasts for slow northwestward movement with eventual recurvature to the northeast were sound. Cary slowed as it approached the weakness in the subtropical ridge while continuing to intensify. At 0912002 , Cary was upgraded to typhoon status based on aircraft and satellite data which indicated that a $30 \mathrm{~nm}(56 \mathrm{~km})$ wide eye had formed, 700 mb flight level winds were 64 kt ($33 \mathrm{~m} / \mathrm{s}$), and an MSLP of 975 mb existed. During the subsequent 12 hours Cary intensified quite rapidly, reaching a maximum intensity of $90 \mathrm{kt}(46 \mathrm{~m} / \mathrm{s})$ with an MSLP of 955 mb at 0923322. Figure 3-05-2 shows Cary just prior to reaching maximum intensity.

Figure 3-05-2. Typhoon Cary just prior to reaching maximum intensity (0922212 July NOAA visual imagery).

Between 00002 on the 9 th and 12002 on the loth, Cary moved very slowly through the ridge axis. At the same time, a mid-latitude trough was forecast to deepen in the lee of Japan, supress the subtropical ridge further south, and allow Cary to enter the westerlies and be steered to the northeast. Acceleration, although considered, was not forecast since the strong upper-level westerlies were forecast to remain well north of 30 N through the forecast period.

Recurvature to the northeast was underway by 1012002. This was accompanied by a significant shearing of the convection in the northwest semicircle of the storm (Figure 3-05-3) resulting in a reduction of intensity to near minimum typhoon strength. Approximately 18 hours later the trough approached a blocking ridge along l70E, turned to the north, and weakened. This allowed the shearing environment over Cary to decrease resulting in a gradual increase in convection and a halt to the weakening trend. At $111118 z$ the ARWO reported that Cary was once again developing an eye; this time $40 \mathrm{~nm}(74 \mathrm{~km})$ across. This large eye persisted for 24 hours (Figure 3-05-4) as Cary reintensified. Figure 3-05-5 shows the intensity variations of Cary. Note the weakening when cary was being sheared followed by reintensification as the upperlevel environment improved.

Figure 3-05-3. Typhoon Cary being sheared. Notice the complete absence of significant convection in the northwest semicircle $[1021562$ July NOAA visual imagery).

Figure 3-05-4. Typhoon Cary after reintensifying.
Maximum sustained winds are 75 kt ($39 \mathrm{~m} / \mathrm{s}$)
(1205292 July NOAA visual imagery).

As Cary moved further north, increasing vertical shear and entrainment of cooler, drier air caused Cary to weaken and gradually become extratropical. By 1406002 Cary had completed its extratropical transition and the final warning was issued. Figure 3-05-6 shows Cary as it completed
transition to an extratropical low. The extratropical remains of Cary continued to weaken and moved west under the influence of a surface ridge northeast of Japan. Cary eventually dissipated to the south of Japan. There were no reports of injuries or damages from Cary.

CARY (OSW)
INTENSITY ANALYSIS

Figure 3-05-5. Satellite (Dvorak, 1973) and aircraft
reconnaissance (Atkinson and Holliday, 1971) intensity estimates of Typhoon Cahy. Best track intensities are shown as the solid line.

Figure 3-05-6. Cary completing extratropical transition. Note the absence of convection around the storm. Only stable stratocumulus clouds remain (1405042 July HOAA visual imagery).

During much of July, the North Pacific was dominated by slow moving or stationary features. After Tropical Storm Betty dissipated over southern China, the southwest monsoon did not re-develop. Instead, surface ridging was established in the South China Sea. Gradually this ridging spread eastward, and by mid-July dominated the western North Pacific from Southeast Asia to the dateline. This anomalous ridging persisted for almost two weeks. Accompanying this ridging was an almost total absence of significant convection in the tropics. With high pressure dominating the climatologically favored area for tropical cyclone development, it was up to a cold front to provide the genesis mechanism for the next storm of the season. This front had persisted for nearly a week, extending across much of the central North Pacific southwestward to just north of Wake Island (WMO 91245). While the southern end of the associated trough had, at times, shown some convective activity, it was not until the front began to move eastward that the disturbance detached from the front and developed into Typhoon Dinah.

On the 20th and 21st, satellite imagery indicated that the trough and its associated surface front, which had been inactive for nearly a week, were finally moving east. As the trough moved eastward, an area of convection remained behind and began to show some organization. Synoptic data at $1200 z$ on the 21st indicated a surface circulation had formed beneath the convection, approximately

Figure 3-06-1. Mid-tropospheric wind flow which initially steered Typhoon Dinah. Note the ridge to the north with a weakness in the ridge to the northwest (FNOC 400 mb NVA analysis valid at $2512002 \mathrm{Jul} y)$.
$300 \mathrm{~nm}(556 \mathrm{~km})$ to the northwest of Wake Island. During the next two days, the disturbance drifted slowly westward with no significant development. This lack of development and slow movement are attributed to the passage to the north of a developing mid-latitude frontal system which significantly elongated the convection.

Late on the $23 r d$, with the frontal system passing to the northeast and its influence lessening, the convection associated with the disturbance increased considerably. Based on the 240000 imagery , a TCFA was issued. As the TCFA was being issued, the first aircraft reconnaissance of the disturbance was already underway. By 240250 z the aircraft had located a 1000 mb circulation center, and had observed surface winds of $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$. Since continued development was expected, the first warning on Dinah valid at 240600 z was issued.

During the next two days, Dinah tracked to the west-southwest and intensified. Late on the 25 th, Dinah attained typhoon intensity with aircraft reporting that a $30 \mathrm{~nm}(56 \mathrm{~km})$ wide circular eye had formed. Dinah's track to the west-southwest is attributed to the flow around a narrow mid-tropospheric ridge to its north (Figure 3-06-1). At this time, Tropical Storm Ed (soon to be Typhoon Ed) was moving southeast towards Dinah. This caused the ridge to the north to slide to the east allowing Dinah to turn to the northwest into the weakness.

Between 00002 on the 26 th and 00002 on the $28 t h$, Dinah and Ed were within 900 nm (1667 km) of each other, with the closest point of approach being at $2 \hat{6} 2100 \mathrm{z}$ when they were approximately $630 \mathrm{~nm}(1167 \mathrm{~km})$ apart (Figure 3-06-2). While JTWC was warning on these systems it was thought that the major track changes to both were a result of their interaction. However, post-analysis indicates this interaction between Dinah and Ed was not nearly as great a factor as initially thought. It is now believed that the proximity of the storms did not have a major affect on their respective tracks and only a short-lived influence on Dinah's intensity.

Figure 3-06-3 shows the intensity variations of Dinah as measured by reconnaissance aircraft. After intensifying for three days, Dinah weakened for a 12 to 24 hour period on the 27 th . This weakening happened after the closest point of approach between the two storms had occurred. The mechanism responsible for this temporary weakening was the well developed outflow of Ed which interacted with Dinah late on the 26th and early on the 27th. Figure 3-06-4 contains a series of three infrared satellite pictures showing the approach and interaction of Ed's outflow with Dinah. This interaction resulted in a significant shearing and suppression of the convection
in the northwest quadrant of Dinah, a temporary weakening of the eye and eyewall and an increase in the central pressure as observed in Figure 3-06-3. Figure 3-06-5 shows an enhanced infrared picture of Typhoon Dinah after interaction with Ed had taken place. Note that the eye is open to the northwest, and there is a lack of significant convection in the northwest quadrant. Although not verifiable, Dinah's brief turn to the east-northeast on the 27 th may also be attributable to the pressure from Ed's outflow. By early on the 28 th , with the distances between Ed and Dinah increasing, the shearing decreased and Dinah intensified rapidly, reaching its maximum intensity of $125 \mathrm{kt}(64 \mathrm{~m} / \mathrm{s})$ at

00002 on the 29 th .
By now Dinah was moving to the northnortheast and increasing its forward speed as the storm tracked along the westward edge of the mid-Pacific high. At approximately 2906002 Dinah made its closest point of approach to Marcus Island (Minami Tori Shima (WMO 47991)) with an intensity of 115 kt ($59 \mathrm{~m} / \mathrm{s}$). This was Dinah's only interaction with land and caused extensive damage to vegetation on the island. The Coast Guard Loran station sustained an estimated $\$ 30,000$ worth of damage to various buildings and equipment. Maximum observed winds on the island were $63 \mathrm{kt}(32 \mathrm{~m} / \mathrm{s})$ with a peak gust to $89 \mathrm{kt}(46 \mathrm{~m} / \mathrm{s})$.

Figure 3-06-2. View of Typhoon Dinah and the developing Tropical Storm Ed (soon to be Typhoon Ed) near the time of their closest point of approach $\{2622132$ July NOAA visual imageryl.

Figure 3-06-3. Intensity variations of Typhoon Dinah as derived from aircraft reconnaissance data.

After passing clear of Marcus Island, Dinah continued to move to the northnortheast at 15 to 18 kt (28 to $33 \mathrm{~km} / \mathrm{hr}$) and weaken. Early on the 31st Dinah was downgraded to a tropical storm. A midlatitude trough which had already been interacting with Dinah for approximately 12 hours, now started steering the storm towards the northeast. Transition to an

(a)

Figure 3-06-4. Three infrared pictures taken during a six hour period showing the approach of Ed's outflow and its interaction with Dinah (a. 2618422 July NOAA infrared imagery, b. 2622142 July NOAA infrared imagery, c. 2700372 July NOAA infrared imagery).

(c)
extratropical low, which began at about 12002 on the 30 th, was completed by 12002 on the lst of August.

The final warning was issued by the Joint Typhoon Warning Center at 1800 z on 1 August. The extratropical remains of Dinah continued to track eastward across the international dateline.

(b)

Figure 3-06-5. Enhanced infrared imagery of Tuphoon Dinah after interaction with Ed 1270545 I July NOAA infrared imagery).

Typhoon Ed, like its predecessor Typhoon Dinah, originated from a mid-latitude system. Forming just south of Japan, Ed initially moved to the southeast, a very unusual direction of movement for tropical cyclones in the northwest Pacific. After briefly interacting with Typhoon Dinah, Ed turned to the west-northwest, a course it maintained until it made landfall on the east coast of China.

The disturbance which eventually developed into Ed began as an area of convection at the southern end of a dissipating cold front transiting Japan. Although the convection was first noticed on 23 July, it was not until late on the 24 th that the cloud mass became detached from the front and showed signs of becoming a tropical disturbance. At 00002 on the 25 th, synoptic data indicated a surface circulation had formed, with an MSLP near 1002 mb . Satellite imagery and synoptic data indicated an upper-level anticyclone had developed over the disturbance providing excellent outflow to the south. These developments prompted the Significant Tropical Weather Advisory (ABEH PGTW) to be reissued at 2501352 in order to include this system as a suspect area. The potential for significant tropical cyclone development was assessed as being "fair". Indeed this was an understatement. The area rapidly transitioned from an extratropical feature to a tropical depression as the convection increased and became more organized. At 250600Z, synoptic data showed surface pressures had decreased to 999 mb and Dvorak satellite intensity analysis estimated that surface winds of $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ were present. Consequently a TCFA was issued at 250745z. The disturbance continued to develop overnight and the first warning on Ed was issued at 18002 on the 25 th.

While Ed was developing, Typhoon Dinah located approximately $900 \mathrm{~nm}(1667 \mathrm{~km}$) to the southeast, was moving to the west and intensifying. The first five warnings forecast Ed to move generally towards Dinah, remain weak and eventually be assimilated into Dinah's inflow. However, Ed did not remain weak but continued to intensify as it moved to the southeast. Aircraft reconnaissance at 2522192 found Ed had deepened to 985 mb and was supporting winds of 40 to 50 kt (21 to $26 \mathrm{~m} / \mathrm{s}$). Ed maintained a 50 kt ($26 \mathrm{~m} / \mathrm{s}$) intensity during the next 24 hours as it moved closer to Dinah. Throughout this period, Ed's outflow remained very well organized and was elongating to the east towards Dinah. This outflow had a significant short term effect on Dinah's convection and intensity early on the 27 th .

During the 26 th, a short-wave trough moved eastward across the Sea of Japan. In response to the trough, Ed turned to the north while maintaining its intensity. By 2700002, the trough had moved to the northeast and was weakening. Ed now came under the influence of a mid to low-level ridge east of Japan. This ridge kept building to the west and forced Ed to move to the westnorthwest, a course it maintained until landfall.

While moving to the west Ed slowly intensified, reaching its peak intensity of $100 \mathrm{kt}(51 \mathrm{~m} / \mathrm{s})$ shortly after passing south of the island of Kyushu (Figure 3-07-1). As Ed transited the East China Sea, entrainment of drier air and passage over cooler waters began to weaken the system. At 0900 z on the 31st, Ed made landfall approximately 60 nm (111 km) north of Shang-Hai (WMO 58367). Maximum sustained winds at landfall were 60 $\mathrm{kt}(31 \mathrm{~m} / \mathrm{s})$. After making landfall, Ed turned to the northwest, transited along coastal China and gradually dissipated. The final warning was issued at 1200 z on the lst of August.

The only known damage caused by Typhoon Ed occurred to shipping, The Korean registered Ishlin Glory enroute from Pohang, South Korea to Nagoya, Japan sank in the Korea Strait on 29 July. One crew member is known dead, with eleven others reported missing.

Figure 3-07-1. Typhoon Ed near maximum intensity (2922422 July NOAA visual imagery).

Tropical Storm Freda was the first of seven significant tropical cyclones to develop during August. Freda began just as Typhoon Ed was dissipating over eastern China and Typhoon Dinah was completing its extratropical transition well to the east of Japan. In the wake of these two typhoons, the atmosphere had not yet returned to its seasonally normal condition before Freda began to show signs of developing. This situation meant that Freda would be slow to develop and take several days to pull together into a tropical cyclone.

On the lst of August, just prior to the development of Freda, the western Pacific was dominated at the surface by a deep trough extending southwest from Dinah into a disturbance north of Guam and then southwestward into the southern Philippine Sea (Figure 3-08-1). The southwest monsoon, which had re-established itself during the
last week of July, had not yet returned to its climatological position and would not do so for several more days. The low-level convergence at the base of this trough west of Guam, was the primary genesis mechanism for Freda. By 020600z, enough convection had developed over the area to merit inclusion of the disturbance in the Significant Tropical Weather Advisory (ABEH PGTW). At 0212002, a closed surface circulation was first analyzed in the Philippine Sea with an estimated MSLP of 1005 mb . The ABEH was reissued shortly thereafter upgrading the potential for significant tropical cyclone development to "fair". An aircraft investigation of the area was requested for the following afternoon. Although at this time it was assumed that the disturbance would progress into a typical tropical cyclone, it would turn out that the most difficult part of warning on this storm would be locating the surface center.

Figure 3-08-1. The 0100002 August 1984 surface/ gradient level analysis. Low-level convergence at the base of the trough west of Guam was the primary genesis mechanism for Tropical Storm Freda.

Since the forecast scenario was not very difficult, and Freda followed a general track to the northwest, the remainder of the discussion will focus of Freda's development through aircraft reconnaissance and the subsequent results.

Mission number one was a resourcespermitting invest on the afternoon of 3 August. It found a very broad, light and variable wind center but could not locate a definite closed circulation. The MSLP reported by the aircraft was 1003 mb . JTWC continued to watch the area and requested another invest for the following morning with a stand-by fix for later that afternoon. The second invest closed-off a 25 kt ($13 \mathrm{~m} / \mathrm{s}$) circulation near 11.0N 132.7E. However, satellite imagery at that time revealed that the disturbance was developing very slowly. The MSLP observed on the second flight was 1005 mb or two millibars higher than on the previous day - not a promising sign. Since development was occurring so slowly, the afternoon stand-by fix was cancelled and the metwatch continued.

In anticipation of continued slow development during the next twenty-four hours, a TCFA was issued at 040415 Z . Two fix missions were also requested for the following day. Mission number three, originally tasked as a fix mission for the morning of 5 August, could not find the system at the forecast location. Reverting to an invest pattern, the crew was still unable to locate a circulation center, although they did find a broad trough some 5 degrees further north than on the previous day. The lowest surface pressure reported was 999 mb . In rapid succession mission number four, the afternoon fix, was cancelled; the TCFA was reissued and positioned further to the northwest; and another aircraft invest was requested for the next morning with a follow-on afternoon fix. At 0507162, Dvorak satellite intensity analysis of the imagery in Figure 3-08-2 indicated the disturbance was developing and estimated that surface winds of $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ were now present. Based on the satellite intensity estimates, the lower pressures reported by aircraft and the forecast for continued slow intensification, JTWC issued the first warning on Freda as a tropical depression at 051200 Z .

Figure 3-08-2. Dvorak intensity analysis of this imagery indicated $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ winds were present prompting the first warning on Freda 10507162 August NOAA visual imageryl.

Mission number five, an invest scheduled for NLT 0600002 , finally found a 993 mb circulation center with winds in excess of 35 $k t$ ($18 \mathrm{~m} / \mathrm{s}$) after several hours of searching. Mission number six, an afternoon fix mission, had little trouble fixing the circulation center of this now $40 \mathrm{kt}(21 \mathrm{~m} / \mathrm{s})$ tropical storm. At last Freda was showing signs of cooperating; however, this was not to last long! The ARWO on mission number six commented, " This storm was rather weak and unorganized. It was very large and could very well have multiple centers." Indeed
this was the case. Satellite imagery indicated there were now two centers of activity - the second one developing to the north of the circulation fixed by the aircraft (Figure 3-08-3). Up until this time the fixes from both aircraft and satellite as well as the forecast emphasis had been on the southern center, but the northern area was about to assume dominance. The apparent storm movement from 060600 Z to 070000 z was as much a reconsolidation around the northern center as it was a simple translation of the entire storm envelope to the northwest. This

Figure 3-08-3. Tropical Storm Freda when reconsolidátion about the northern center was about to commence. Note the southern area of convection, where the aircraft and satellite had been fixing the center and a second area of convection located further to the north where the new center would develop 10610102 August DMSP visual imagery)
reconsolidation was complicated by the fact that it occurred at night when only infrared satellite imagery was available. When mission number seven went into Freda the next morning, it could not find a circulation where the southern center should have been. However, when the pattern was changed to that of an invest mission they found Freda located significantly to the northwest within the northern area of convection. The MSLP had now decreased to 988 mb with maximum surface wind of $45 \mathrm{kt} \mathrm{(} 23 \mathrm{~m} / \mathrm{s}$) being reported. Mission number eight, the last one flown into Freda, was unable to penetrate the center since the storm had moved over Taiwan.

Freda quickly transited northern Taiwan and the Formosa Straits before making landfall on the Chinese mainland at approximately 071500z. Like Typhoon Ed, a week earlier, Freda held together over land for two more days before finally dissipating.

In summary, Tropical Storm Freda was a slow developing system that exhibited two centers of action for a portion of its life. The southern center was more dominant until reconsolidation around the northern center occurred just prior to Freda crossing Taiwan. Freda tracked generally to the northwest and was identifiable over land for several days after it moved ashore.

Tropical Depression 09W, just like its predecessor Tropical Storm Freda, was a difficult storm to warn on. The depression's low-level circulation remained weak and poorly organized which made it very difficult to locate. Extensive post-analysis indicates that JTWC warned on the mid-level circulation which was co-located with the organized convection, rather than the ill-defined lowlevel center which remained well to the south of the main convection.

Tropical Depression 09W first appeared early on the 7th of August as a broad 1006 mb low in the Near-Equatorial Trough approximately $660 \mathrm{~nm}(1222 \mathrm{~km})$ south of Guam. The disturbance was mentioned on the 070600 z Significant Tropical Weather Advisory (ABEH PGTW). As it moved to the northwest, the disturbance showed signs of increased organization on satellite imagery, prompting the issuance of a TCFA at 081200Z.

Aircraft reconnaissance on the afternoon of 9 August, indicated that the surface circulation associated with the disturbance was broad and weak. Only 10 to 15 kt (5 to $8 \mathrm{~m} / \mathrm{s}$) surface winds were observed with an MSLP of 1004 mb . The TCFA was reissued daily from the 9 th to the llth as the system continued to show convective organization and the presence of a surface circulation in the synoptic data. During this period, the disturbance was very slow to develop a favorable upper-level circulation. The 200 mb flow persisted in being unidirectional (easterly) over the convection. This easterly flow sheared the convection preventing the accumulation of warm, moist air at the low-to-mid levels and the attendant surface pressure drop.

The aircraft reconnaissance investigative flight on the morning of 10 August could not find a surface circulation center. By this time, the system had moved out of the NearEquatorial Trough and had become the southeastern extension of the monsoon trough.

Between $100600 z$ and $110600 z$, the disturbance moved almost due north. This brought the disturbance under the influence of a TUTT cell located to the northwest near Taiwan. The 200 mb flow over the system now came from the south and was diffluent north through east of the surface circulation. Satelifte imagery confirms this by indicating the presence of the heaviest convection in that area. At 1107292, aircraft reconnaissance closed-off a surface circulation center with 25 kt ($13 \mathrm{~m} / \mathrm{s}$) surface winds and an MSIP of 1003 mb . Based on the improved upperlevel wind flow and the closed circulation found by aircraft, the first warning on Tropical Depression 09W was issued at lll200z.

The first six warnings on 09W forecast it to move to the northwest. These forecasts were based on objective forecast aids, including the One-Way Interactive Tropical Cyclone Model (OTCM). Upon post-analysis, these forecasts do not agree well with the synoptic situation present at the time. A low-to-middle level ridge was located to the
north of the depression. In retrospect, the more accurate and synoptically correct forecast, especially with such a weak system as Tropical Depression 09w, would have been a west-northwest to west track along the northern side of the monsoon trough.

Complicating the forecasting of Tropical Depression 09W was the difficulty in positioning the surface center. The surface circulation center was poorly organized because it was embedded in the monsoon trough. The displacement of the mid-to-upper level circulation to the north within the convection, made accurate positioning by satellite imagery of the actual low-level depression center very difficult. Figure 3-09-1 shows one of the few times that the weak, poorly defined, low-level circulation was visible on satellite imagery. Post-analysis of aircraft reconnaissance, synoptic, and satellite data, shows that the depression center, as reflected in the warning positions, was the middle-to-upper level center and not the weak and poorly defined surface circulation center which was located approximately $150 \mathrm{~nm}(278 \mathrm{~km})$ to the south. JTWC warned on this mid-level feature until 1500002 when the convection finally dissipated over Taiwan and it was obvious that no significant low-level circulation persisted. It is now apparent that the surface center moved along the monsoon trough as a sheared, sometimes exposed low-level circulation from 1112002 to 131800 z and dissipated shortly thereafter as it merged with a cyclonic circulation in the northern South China Sea. This circulation would develop into Tropical Storm Gerald a few days later.

Figure 3-09-1. Tropical Depression 09W passing south of Taiwan. Note the poorly defined exposed low-level circulation located well to the south of the main convection. At the time, the depression's center was thought to be located underneath this convection. However, post-analysis now indicates the exposed low-level circulation was the actual location of the depression's center (1307182 August NOAA visual imagery).

Tropical Storm Gerald led a rather uneventful life. Developing in the northern South China Sea, Gerald remained embedded in the monsoon trough for five days. Its proximity to Typhoon Holly affected both its track and intensity. By the time it made landfall, it had weakened to a minimal tropical storm causing little, if any, damage.

By mid-August, the southwest monsoon had returned to its climatological position. The associated monsoon trough now extended from'northern Vietnam across the northern South China Sea and then southeast to just south of Guam. As Tropical Depression 09W developed east of the Luzon Straits, the trough deepened. By the 12 th of August, synoptic data indicated a closed surface circulation had formed in the northern South China Sea near 18N 117E with an MSLP near 1001 mb . The circulation continued to develop and at 1312002 the MSLP had decreased to 998 mk with winds near the center of 10 to 20 kt (5 to $10 \mathrm{~m} / \mathrm{s}$); 20 to 30 kt (10 to $15 \mathrm{~m} / \mathrm{s}$) winds were located south of the circulation center associated with the southwest monsoon.

By 141800 Z the convection associated with remnants of Tropical Depression 09W near Taiwan, had nearly dissipated. Up to this point there was very little significant convection in the northern South China Sea. The convection that was present showed no real organization. Between 141800 z and 1500002, the convection in the northern South China Sea increased considerably. Surface pressures had now decreased to 997 mb. However, winds near the center were light - only 5 to 15 kt (3 to $8 \mathrm{~m} / \mathrm{s}$), while
the 20 to 30 kt (10 to $15 \mathrm{~m} / \mathrm{s}$) winds still persisted further south - a classic monsoon depression.

The entire monsoon trough had been discussed on the Significant Tropical Weather Advisory (ABEH PGTW) since 130600Z. However, with improved convective organization and lower pressures being observed in the northern South China Sea, this disturbance finally warranted inclusion on its own merits in the 150600 Z ABEH.

Synoptic data at 1512002 indicated a broad circulation still persisted, but now 15 to 30 kt (8 to $15 \mathrm{~m} / \mathrm{s}$) winds were being reported much closer to the center. This prompted the issuance of a TCFA at 151327 Z . Less than 12 hours later the first aircraft reconnaissance mission found the system had deepened to 991 mb and was supporting 40 kt $(21 \mathrm{~m} / \mathrm{s})$ winds near the center. The first warning on Gerald, valid at 160000 , followed shortly.

During the next three days, Gerald moved erratically on a generally westward course, remaining embedded in the monsoon trough. Gerald continued to intensify reaching its maximum intensity of 55 kt ($28 \mathrm{~m} / \mathrm{s}$) at 1718002. Gerald then maintained this intensity for the next two days. The inability of Gerald to intensify beyond 55 $k t(28 \mathrm{~m} / \mathrm{s})$ was due to a strong shear over the storm primarily from the outflow of Typhoon Holly which had developed east of Taiwan on 16 August and persisted throughout most of Gerald's life. This shearing occasionally resulted in the low-level circulation being exposed east of the convection (Figure 3-10-1).

Figuro 3-10-1. Example of the partially exposed low-level circulation of Tropical Storm Gerald which was observed periodically. during the storm's lifetime. Note the strong easterly flow aloft shearing the convection to the west. This shear was caused by the outflow of Typhoon Holly located far to the northeast (1702002 August DMSP visual imagery).

Figure 3-10-2. Tropical Storm Gerald and the developing Typhoon Holly near the time of their closest point of approach. At this time they were approximately $800 \mathrm{~nm}(1482 \mathrm{~km})$ apart $(1723272$ August NOAA visual imageryl.

Forecasting Gerald's movement proved to be difficult. Initially most forecast aids and JTWC's official forecast aid called for the storm to move northwest and make landfall over China. However, as Holly intensified and moved west Gerald slowed its westward movement, doing a small cyclonic loop early on the l7th. When Gerald slowed and moved to the south, the forecast scenario changed and called for Gerald to remain quasi-stationary for twelve to twenty-four hours, and then move slowly northeast under the influence of the inflow pattern of the developing Typhoon Holly. Figure 3-10-2 shows Tropical Storm Gerald and the developing Typhoon Holly near their closest point of approach. However, after completing its loop, Gerald once again resumed its westward course as Holly turned to the northwest.

Starting at 191800z, Gerald turned to the northeast as the very large mid-level circulation of Typhoon Holly, now located
in the East China Sea, again affected Gerald. Accompanying this turn to the northeast was a decrease in the convection as the shearing increased. This began a weakening trend which continued until dissipation.

Gerald accelerated to the northeast and weakened making landfall at 2104002 approximately $50 \mathrm{~nm}(93 \mathrm{~km})$ east-northeast of Hong Kong (WMO 45005). The closest point of approach to Hong Kong was at 2101002 when Gerald passed $30 \mathrm{~nm}(56 \mathrm{~km})$ to the southeast.

After making landfall, Gerald turned to the north and weakened rapidly as Holly's influence decreased. Reports from the coastal stations along southern China indicated winds of 20 to 30 kt (10 to $15 \mathrm{~m} / \mathrm{s}$) accompanied Gerald as it made landfall. There were no reports of damages as Gerald moved inland over China and dissipated.

Typhoon Holly formed in the eastern extension of the monsoon trough at the same time that Tropical Storm Gerald was forming in the South China Sea. It was the fourth significant tropical cyclone to develop in the trough in less than two weeks. Holly was unusual in that it never was, by definition, a tropical depression. Because it evolved from a very active monsoon trough, Holly was already at tropical storm strength when it finally attained a closed circulation. Despite only reaching a maximum intensity of $75 \mathrm{kt}(39 \mathrm{~m} / \mathrm{s})$, Holly significantly affected much of the western North Pacific due to its large wind field.

Even as Tropical Depression 09W was transiting the Luzon Straits, synoptic data indicated that a very active trough with poorly organized convection persisted to the east. At 131200 z the monsoon trough extended from the weakening Tropical Depression 09W eastward to just northwest of Guam. By 141200 z the eastern end of the trough had moved northwest and become sharper. Synoptic data indicated the trough had deepened with an MSLP near 1000 mb . Numerous 20 to 35 kt (10 to $18 \mathrm{~m} / \mathrm{s}$) ship reports existed south of the trough axis in the active southwest monsoon. Organization of the convection over the trough also improved during this period, and suggested that a surface circulation was forming. These developments prompted the issuance of the first of two TCFAs at 141515z.

15th found only a sharp trough with 25 kt ($13 \mathrm{~m} / \mathrm{s}$) surface winds and an MSLP of 998 mb . At 151200 z synoptic data indicated that the southwest monsoon along with a tight pressure gradient between the monsoon trough and the subtropical ridge to the northeast, were now generating gale force winds both north and south of the trough axis. This occurred before any closed circulation was analyzed. These areas of gale force winds were contained in a NAVOCEANCOMCEN Guam (WWPN PGTW) extratropical wind warning bulletin.

The second aircraft investigative mission into the disturbance closed-off a circulation center at $160225 z$ and found that the MSLP had decreased to 992 mb . Gale force winds were observed within two degrees of the center. The first warninng, valid at 1600002 , vas issued shortly thereafter with Holly at tropical storm strength.

Determination of the initial intensities of Holly and its associated $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s}$) wind radii were difficult since the gale force monsoon flow extended for hundreds of miles to the south and east of the storm. At first, the monsoon flow was included as a gale area in the NAVOCEANCOMCEN Guam extratropical wind warnings. However, as Holly developed, it took the monsoon fiow into its circulation and subsequently became a very large storm. Figure 3-11-1, the 1806002 surface analysis, shows the very large area influenced by Holly. Aircraft and satellite data also indicated that Holly was abnormally large. mission into the disturbance at 0000 z on the

Figure 3-11-1. Surface analysis at 1806002 showing the large circulation of Typhoon Holly. Holly was still consolidating the monsoonal flow into its circulation at this time.

Figure 3-1l-2 shows the wind field associated with Holly as reported by reconnaissance aircraft on 18 August. This flight was representative of the data obtained on many of the missions while Holly was a typhoon. The center was characterized by a large area of lighter winds. It was not until. the aircraft was more than 60 nm (111 km) from the center that it encountered winds above $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$. Generally throughout the life of Holly, the highest winds were found in a band 60 to 150 nm (111 to 278 km) from the center. Within this band, the strongest winds were usually ooserved in the northern and eastern portions of the storm. The winds observed at Kadena $A B$, Okinawa confirmed the aircraft reports. The strongest winds observed at Kadena were
in two different periods: from 171300 z to 1809002 and from 1902002 to 1917002 when gusts above $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ were reported. Lighter winds, corresponding to the passage of the huge center, were reported between these periods. The maximum sustained wind reported at Kadena was $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ at 1913552 with a peak gust to $72 \mathrm{kt}(37 \mathrm{~m} / \mathrm{s})$ at 190850z. Fortunately, despite the strong winds and the 16.76 in (425 mm) of rain, there were no deaths or serious damage reported on Kadena AB. However, some 16,000 air and ferry travelers were stranded on the island during Holly's passage. Figure 3-11-3 shows Holly as it passed west of Okinawa. Notice the very large area covered by Holly's circulation.

Figure 3-11-2. Plot of aircraft recornaissance data from the seventh mission into Typhoon Holly. Holly's center uas fixed at 1809002 and 1811342 August. Wind barbs are the measured 700 mb winds. The tens digit in the wind direction is plotted with the wind barb.

Holly initially moved to the west under the influence of the subtropical ridge, reaching typhoon intensity at 180000z. At that time Holly had turned to the northwest, a course it maintained fol almost 30 hours. After passing west of Okinawa, Holly turned to the north as it moved around the western periphery of the weakening subtropical ridge. Holly plodded to the north for the next twenty-four hours with no significant intensity changes. At this point the westerlies began to, influence the storm. Holly was steered to the northeast and began to accelerate. Holly's forward speed peaked at 24 kt ($49 \mathrm{~km} / \mathrm{hr}$) just prior to its transition to an extratropical low.

As Holly passed through the Korean Strait, it inflicted considerable damage on the Korean peninsula and the Japanese Island of Kyushu. News reports indicated at least one person killed, nine missing and eleven injured. Property damage was estimated initially at one million dollars. Heavy rainfall accompanied the storm. Miyazake (WMO 47830) on Kyushu recorded 15 inches (381 mm) of rain during a twenty-four hour

Figure 3-11-3. Typhoon Holly passing just west of Okinawa. Notice the large area covered by Holly's circulation (182303Z August NOAA visual imagery).
period. Extensive flooding and landslides were also reported.

Holly weakened as it transited the Korean Strait due to interaction with the rugged terrain. As Holly entered the Sea of Japan, it began transitioning to an extratropical system. Figure 3-11-4 shows Holly shortly after completing the extratropical transition. What little convection remains is associated with the front while the exposed low-level circulation is composed of stable stratocumulus clouds. The final warning was issued at 221800 z as Holly neared the island of Hokkaido.

Overall, the JIWC forecasts on Typhoon Holly provided good decision assistance to JTWC's customers. Kadena AB was provided the time needed to evacuate its planes, and South Korea and Japan had sufficient warning time to prepare and thus minimize damage. Even though Holly was not one of the strongest storms of the season, it definitely had a major impact on much of the northwest Pacific.

Figure 3-11-4. Holly after completing its extratropical transition. The low-level center is surrounded by stable stratocumulus clouds. What little convection remains is located southeast of the center and is due to the frontal system and orographic affects $(2205262$ August NOAA visual imagery).

Tropical Depression 12 W developed in the eastern periphery of the monsoon trough, a favorable position for development, but had a very brief existence. Although this system was located in an area of highly convergent low-level flow, the upper-level support, while initially favorable for development was unable to maintain itself and contributed to the depression's dissipation. The combination of a weak low-level circulation and ill-defined mid and upper-level features made satellite fixing difficult, resulting in a wide disparity between fixes. Aircraft reconnaissance also experienced difficulty in fixing this weak system.

The southwest monsoon was slow to re-develop in the wake of Typhoon Holly. Late on 20 August, with a broad trough extending across the northern Philippine Sea, an area of convection began to develop at the eastern end of the trough just to the north of Guam. Synoptic data at 2100002 indicated that a weak 1011 mb closed circulation had formed approximately $200 \mathrm{~nm}(370 \mathrm{~km})$ northnortheast of Guam. These developments prompted a discussion of the disturbance in the 210600 Z Significant Tropical Weather Advisory (ABEH PGTW). The disturbance tracked generally to the northwest during the next two days, and slowly consolidated.

Satellite imagery at 230000 z showed that the disturbance was separating from the trough. Dvorak satellite intensity analysis estimated that surface winds of 25 kt ($13 \mathrm{~m} / \mathrm{s}$) were now associated with the system. The first aircraft reconnaissance mission was already underway, but could only find a broad weak circulation. No winds greater than $20 \mathrm{kt}(10 \mathrm{~m} / \mathrm{s})$ were observed. During this time, a weak, upper-level antícyclone developed over the convection. Its development was aided by a TUTT cell located approximately 6 degrees to the west which provided good divergence aloft. These factors contributed to the issuance of a TCFA at 230500 z .

During the following 18 hours the disturbance showed little change. An aircraft reconnaissance mission the next morning fixed a broad wind and pressure center, with an MSLP of 999 mb . Once again no winds greater than $20 \mathrm{kt} \mathrm{(10} \mathrm{m/s)} \mathrm{were}$ observed within $250 \mathrm{~nm}(463 \mathrm{~km})$ of the center. Dvorak satellite intensity estimates now indicated that maximum sustained winds of $30 \mathrm{kt} \mathrm{(} 15 \mathrm{~m} / \mathrm{s}$) were present and forecasted $35 \mathrm{kt}(18 \mathrm{~m} / \mathrm{s})$ winds in 24 hours. Synoptic data revealed that $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s}$) winds were indeed present, but they were located approximately 250 nm (463 km) northeast of the disturbance's center, and were associated with the tight pressure gradient between the subtropical ridge located north of Marcus Island (Minami ToriShima (WMO 47991)) and the disturbance. However, upper-level support remained favorable for some intensification which meant that the disturbance would pose a threat within 36 hours to the military and civilian populations on the Ryukyu Islands. Accordingly, the first warning on Tropical Depression 12 W was issued at 240000 Z .

The favorable upper-level support proved to be short-lived. Visual satellite imagery at first light the next morning (Figure 3-12-1) revealed an exposed lowlevel circulation with the associated convective activity displaced several hundred miles to the north. Upper-level synoptic data indicated the TUTT cell had moved northwest to near Taiwan, and the convection had sheared to the north, remaining in the divergent region east of the TUTT cell. There was no longer any evidence of an upper-level anticyclone over the depression. The upper-level flow pattern over Tropical Depression 12 W was now dominated by 30 to 50 kt (15 to $26 \mathrm{~m} / \mathrm{s}$) easterly winds from a large anticyclone which had been present near Japan for several days. This flow was sufficient to prevent the redevelopment of any significant convection near the low-level circulation center. With further development now

Figure 3-12-1. Exposed low-level circulation of Tropical Depression 12ω. The convection which was colocated with the low-level circulation 24 hours earlier is now displaced to the north 12422192 August NOAA visual imageryl.
unlikely, the final warning was issued at 00002 on the 25 th.

There were a total of four aircraft reconnaissance missions flown into this system, but only two could fix a center, and both of these had large meteorological and navigational errors. The maximum surface or $1500 \mathrm{ft}(457 \mathrm{~m})$ winds found within 200 nm $(320 \mathrm{~km})$ of the center were $20 \mathrm{kt}(10 \mathrm{~m} / \mathrm{s})$. The minumum sea-level pressure found by aircraft was 995 mb at 2407087 which could support $35 \mathrm{kt}(18 \mathrm{~m} / \mathrm{s})$ winds according to

Atkinson and Holliday (1977). However, no such winds were observed with Tropical Depression 12W.

The exposed low-level circulation, completely void of convection, was tracked northwest after the final warning was issued with 15 to 20 kt (8 to $10 \mathrm{~m} / \mathrm{s}$) winds and pressures near 1000 mb being reported. This circulation crossed the Ryukyu Islands near Okinawa before merging with a weak midlatitude front in the northern East China Sea late on 26 August.

The deadilest typhoon to strike the Philippines this century began innocently enough as a weak disturbance on the eastern end of the monsoon trough. After passing Guam as a developing tropical storm, Ike turned to the west-southwest and gradually intensified. Four days later, Ike attained an intensity of $125 \mathrm{kt}(64 \mathrm{~m} / \mathrm{s})$ and crossed the central Philippines causing extensive damage and over 2000 deaths. After wrecking havoc on the Philippines, a weakened Ike moved into the South China Sea where it reintensified to $115 \mathrm{kt}(59 \mathrm{~m} / \mathrm{s})$ before making landfall and finally dissipating over mainland China.

As early as 21 August, a weak surface circulation was being analyzed southeast of Guam on the eastern extension of the monsoon trough. From the 21 st through the 25 th, various Trust Territory of the Pacific Islands reporting stations and ship observations indicated that a weak 1009 mb low persisted in this area. The lack of development of this circulation during this period was attributed to the strong winds aloft from the same anticyclone that sheared Tropical Depression 12 W .

Late on the 25th the upper-level shearing began to decrease. This resulted in a rapid increase in the convection over the low-level circulation center. By 260000 z the disturbance, which was to develop into Ike, began to show continuity. Synoptic data at 2612002 indicated the disturbance was intensifying with 20 to 35 kt (10 to $18 \mathrm{~m} / \mathrm{s}$) winds being reported on the southern periphery of the circulation center. The MSLP of the disturbance was estimated to be near 1006 mb .

At 2100 z on the 26 th, a TCFA was issued based on the earlier mentioned synoptic reports and satellite imagery which showed rapid development of a compact circulation (Figure 3-13-1). Due to the persistent improvement in organization and the proximity of the disturbance to Guam, the first warning on Ike was issued a few hours later at 2700002 .

The initial forecast track called for Ike to move to the northwest. This forecast was based on persistence and the One-Way Interactive Tropical Cyclone Model (OTCM), the best forecast aid currently available to the Joint Typhoon Warning Center. Based on the location of the system and the forecast track, Guam was placed in Condition of Readiness III at 2705302 . This was the first time since 1 December 1982 that Guam had been in other than Condition of Readiness I \mathbf{V}. (At that time Typhoon Pamela was approaching from the east.)

The first aircraft reconnaissance flight into Ike fixed the center at 2705102 approximately $120 \mathrm{~nm}(222 \mathrm{~km})$ south of Guam with an MSLP of 997 mb and estimated the maximum surface winds at $35 \mathrm{kt}(18 \mathrm{~m} / \mathrm{s})$. Ike continued moving to the northwest at a speed of 7 to $9 \mathrm{kt} \mathrm{(13} \mathrm{to} 17 \mathrm{~km} / \mathrm{hr}$) during the next 24 hours and intensified. The storm remained compact as it passed $90 \mathrm{~nm}(167 \mathrm{~km})$ southwest of Guam. At its closest point of approach to Guam, Ike supported winds of 50 to $60 \mathrm{kt}(26$ to $31 \mathrm{~m} / \mathrm{s})$ but due to the compact circulation, Guam suffered no ill effects from the storm. The Naval Oceanography Command Center (NAVOCEANCOMCEN) on Nimitz Hill recorded only $15 \mathrm{kt} \mathrm{(} 8 \mathrm{~m} / \mathrm{s}$) sustained winds with a peak gust to 21 kt ($11 \mathrm{~m} / \mathrm{s}$) during Ike's passage. Guam returned to Condition of Readiness IV at 272130 Z based on the 271800 z warning position and forecast track.

After passing to the southwest of Guam, Ike continued tracking to the northwest for the next 12 hours. At approximately $0600 z$ on the 28 th, Ike reached the northern most latitude it would attain in the Philippine Sea. At that time Ike was located 160 nm $(296 \mathrm{~km})$ due west of Guam. For the next four days Ike would track towards the Philippines on a west-southwest course.

Figure 3-13-1. Early morning picture of lke at the time the TCFA was issued. A developing upper-level anticyclone is providing good outflow channels to the south and west $\{2621312$ August NOAA visuat imageryl.

This change in track was due to the effects of the subtropical ridge south of Japan. From the 26 th to the 28 th, this ridge was orientated from east to west. However, as Tropical Storm June (which developed over the western Philippine Sea on 28 August) moved westward, the ridge built south in June's wake and took on a more north-south orientation. This forced Ike on a generally west-southwest course until it neared the central Philippines. Between 2718002 and 281800z, Ike did not increase in intensity due to strong shearing of the convection from the north.

Late on the $28 t h$, the shearing decreased slightly which allowed Ike to intensify to typhoon strength. During this intensification the Atkinson and Holliday (1977) pressure-wind relationship did not hold. For example, at 2823412 aircraft reconnaissance reported surface and flight level winds of $75 \mathrm{kt}(39 \mathrm{~m} / \mathrm{s})$, yet the MSLP was only 991 mb . This would normally be expected to support winds of $45 \mathrm{kt}(23 \mathrm{~m} / \mathrm{s})$, some 30 kt ($15 \mathrm{~m} / \mathrm{s}$) less than what was being observed. After moving almost due west for 12 hours, Ike again turned to the southwest. During this time Ike weakened to below typhoon force due to the persistent strong shearing aloft. However, this weakening was to be temporary.

As Ike turned more to the west on the 30th, the upper-level anticyclone over Ike redeveloped and the weakening trend ceased. By 3012002 Ike had regained typhoon intensity. During this second intensification
period the pressure-wind relationships were in better agreement. At 3023102 aircraft. reconnaissance found the MSLP had decreased to 971 mb and reported 700 mb flight level winds of $65 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$. This was in much better agreement with the $70 \mathrm{kt}(36 \mathrm{~m} / \mathrm{s})$ winds expected by Atkinson and Holliday
(1977). During this second intensification, Ike's circulation became larger - more typical of a WESTPAC typhoon.

For the next two days Ike tracked toward the central Philippines at an average speed of $12 \mathrm{kt}(22 \mathrm{~km} / \mathrm{hr})$ and doubled in intensity. Figure 3-13-2 shows Ike as it neared the Philippines. On the lst of September just prior to hitting the Philippines, the last aircraft reconnaissance flight was made. The lowest MSLP found was 947 mb at 010845 z and 700 mb flight level winds of $117 \mathrm{kt}(60 \mathrm{~m} / \mathrm{s})$ were measured in the eyewall of a 25 nm (46 km) circular eye. The maximum surface winds were estimated at 120 to $130 \mathrm{kt}(62$ to $67 \mathrm{~m} / \mathrm{s})$.

For the next 30 hours Ike cut a path of death and destruction across the central Philippine Islands that is unequaled in recent history (Figure 3-13-3). In the wake of its path, Ike left a reported 1026 people dead, with 1147 people missing and presumed dead. Published figures for the number of people left homeless in the central Philippines range from 200,000 to 480,000. The worst hit region was the Surigao del Norte Province of Northern Mindanao where approximately 1000 people died (Figure 3-13-4).

Figure 3-13-2. Typhoon Ike intensifying as it nears the Philippines. At this time Ike was supporting winds of about $105 \mathrm{kt}(54 \mathrm{~m} / \mathrm{s})$ (3122522 August NOAA visual imageryl.

Ike tracked to the west-northwest and then to the northwest at an average speed of $11 \mathrm{kt}(20 \mathrm{~km} / \mathrm{hr})$ as it crossed the Philippines and weakened. At 0000 z on the 3 rd of September Ike had weakened to 45 kt ($23 \mathrm{~m} / \mathrm{s}$). Ike quickly reintensified as it moved into the South China Sea attaining typhoon intensity by 0312002. Aircraft reconnaissance penetrating the $30 \mathrm{~nm}(56 \mathrm{~km})$ wide eye at 0308432 found $65 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$ winds at the surface and $68 \mathrm{kt} \mathrm{(} 35 \mathrm{~m} / \mathrm{s}$) winds at 700 mb . Ike continued to track steadily to the northwest at 12 to 13 kt (22 to 24 $\mathrm{km} / \mathrm{hr}$) reaching an intensity of 115 kt ($59 \mathrm{~m} / \mathrm{s}$) at 0418002. Ike gradually lost intensity from this point on, due to the proximity of land restricting the inflow, and shearing from a trough passing to the north.

Ike transited across Hainan Island on 5 September still packing winds of 70 to 80 kt (36 to $41 \mathrm{~m} / \mathrm{s}$). Shortly after 0000 z on the 6th, Ike crossed the coast of mainland China, as a tropical storm, approximately 60 nm (lll km) south-southeast of Nan-Ning (WMO 59431). News reports indicate Ike was responsible for at least 13 deaths in China. Extensive flooding and crop damage were also reported as Ike moved inland and dissipated.

Figure 3-13-3. Ike as it crossed the central Philippines. At this time Ike was supporting winds of about $90 \mathrm{kt}(46 \mathrm{~m} / \mathrm{s})(0201412$ September DMSP visual imageryl.

Figure 3-13-4. Aerial reconnaissance photo of a town in Northern Mindanaa showing some of the damage caused by Typhoon Ike. PPhoto provided by CDR M. McCallister, Naval Oceanography' Command Facility, Cubi Point).

Tropical Storm June, the last of seven significant tropical cyclones to develop during August, originated in the monsoon trough like most of the other storms before it. June would also be typical of several other storms during the month, in that the most difficult part of warning on the system would be in locating the actual surface center.

Even as the final warning was being issued on the exposed low-level circulation of Tropical Depression l2W, satellite imagery indicated a large area of convection persisted further south over the active monsoon trough (Figure 3-14-1). At 12002 on the 25 th of August, synoptic data indicated a closed 1000 mb circulation had formed in the trough. During the next two days this circulation drifted westward as the associated convection tried to consolidate. Strong upper-level shearing, from the same anticyclone which sheared Tropical Depression 12W, inhibited development on the 25th and 26th. But early on the 27 th , an upper-level anticyclone began to form over the disturbance making conditions more favorable for development. Although synoptic data clearly indicated a surface circulation was present during this time, the low-level center was not consistently lacatable on satellite imagery within the broad area of convection. This problem would plague JTWC throughout the life of Tropical Storm June.

The first aircraft reconnaissance mission into the disturbance at 270651 z found a closed 30 kt ($15 \mathrm{~m} / \mathrm{s}$) circulation with a light and variable wind center $50 \mathrm{~nm}(93 \mathrm{~km})$ in diameter. Based on this information and indications from satellite imagery that the convection was becoming more organized, a TCFA was issued at 2708002. As typical with most monsoon disturbances, the strongest winds were observed south of the circulation center and associated with the southwest monsoon.

During the following 18 hours, synoptic data indicated the disturbance continued to intensify. However, the convection failed to show the expected increase in organization. During much of this time satellite imagery actually indicated multiple circulation centers were present! Although JTWC wanted to go to warning status on this disturbance as early as 2712002, the inability to accurately position the surface center made this impossible. The area of gale force winds, however, were covered in the NAVOCEANCOMCEN Guam, extratropical wind warning bulletin (WWPN PGFW).

Between 280000 z and 2806002 the disturbance finally consolidated into a single circulation center (Figure 3-14-2). Aircraft and satellite fixes now began to consistently agree on the location of that center. This prompted the issuance of the first warning on June as a tropical storm at 2806002 .

Figure 3-14-1. Active area of convection in the northern Philippine Sea associated with the southwest monsoon which would later develop into Tropical Starm June. Note the exposed low-level circulation further north which is the remnants of Tropical Depression 12 W (250630Z August NOAA visual imagery).

Figure 3-14-2. The developing Tropical Storm June east of the Philippines. At this time June was consolidating about a single circulation center (2807342 August NOAA visual imagery).

At the time of the first warning Propical Storm June was located 110 nm (204 km) east of Luzon. June was a broad circulation with the strongest winds in a band 60 to 150 nm (111 to 278 km) from the center. During the next 12 hours June headed west steered by the flow along the south side of a mid to low-level subtropical ridge. The storm made landfall on the east coast of northern Luzon at about 2815002 .

After landfall synoptic data indicated the surface circulation of June apparently
tracked to the west-northwest following the low-level terrain over northern Luzon and re-emerged on the northwest coast at approximately 290000z. However, the midlevel circulation and nearly all of the convection continued to move almost due west. Since the passage over Luzon occurred at night when only infrared imagery was available, accurate positioning of the low-level center from satellite imagery was impossible.

Figure 3-14-3. Tropical Storm June in the northern South china Sea. The broad surface circulation is located north of the convection. This is one of the few times that satellite imagery would be able to accurately fix the low-level circulation of June as it transited the South China sea 12923402 NOAA visual imagery).

As June emerged in the northern South China Sea a mid-latitude trough moved across eastern China and weakened the subtropical ridge. This allowed June to turn to the northwest. June made landfall at approximately 3017002 on the coast of mainland china $130 \mathrm{~nm}(241 \mathrm{~km})$ east of Hong Kong (WMO 45005). Although June did intensify to 60 kt ($31 \mathrm{~m} / \mathrm{s}$) as it transitted the northern South China Sea, the storm remained poorly organized (Figure 3-14-3). During this time aircraft and radar were the only accurate and consistent means of locating the circulation center.

Tropical Storm June was the first named
tropical cyclone of the 1984 season to directly strike the Philippines. Heavy rains from the combination of June and the southwest monsoon caused extensive flooding throughout much of Luzon, particularly along the west coast and in river valleys. At least 67 deaths were attributed to the storm. The deaths resulted primarily from heavy rains, flooding and the accompanying landslides. In addition to extensive damage to crops and vegetation, over 25,000 families lost their homes. However, despite the considerable damage caused by June, it was relatively minor compared to the death and destruction Typhoon Ike brought to the central Philippines only four days later.

Typhoon Kelly was quite representative of the first half of the 1984 season which was characterized by numerous high latitude, fast-moving systems. This typhoon developed at the southern end of a shear line and displayed some erratic movement during its formative stages before accelerating to the north-northwest towards a mid-level cut-off low. During the last phase of its life, Kelly recurved very sharply to the northeast and transitioned into an extratropical system.

During the first week of September, a strong frontal system moved across the North Pacific Ocean and left in its wake a quasistationary shear line extending between 20 N 170 E and 35 N 180 E . On 11 September the southern portion of the shear line became detached and began to take on tropical characteristics.

During the next two days the disturbance slowly developed as the associated convection increased in organization. At 00002 on the 13th, an exposed low-level circulation was observed on satellite imagery west-northwest of the main convection. Dvorak intensity analysis of the 130000 imagery estimated that 30 kt ($15 \mathrm{~m} / \mathrm{s}$) surface winds were present near the center. Sparse synoptic data indicated a 20 to 25 kt (10 to $13 \mathrm{~m} / \mathrm{s}$) circulation was present. Based on this information, a TCFA was issued at $130435 z$ and an aircraft investigative mission was requested for the following morning. Throughout the evening the system continued to develop with the convection showing a
considerable increase in organization. This prompted the issuance of the first warning at 131800z. While this was occurring in the south, a mid-level cold core low was developing further north on the northern remnants of the shear line. This cut-off low and the mid-latitude westerlies just north of it would be the principal steering mechanisms for Kelly.

As long as Kelly stayed below tropical storm strength it moved slowly. Satellite fixes on the l3th indicated Kelly moved in a cyclonic loop about its point of origin. However, after it became a named storm, Kelly accelerated to the north and eventually to the northwest as it was caught in the southerlies between the mid-Pacific high and the inflow pattern about the cutoff low. Because of its relatively high latitude, Kelly entrained cold air into its circulation almost from the start, and was slow to intensify. By 1418002 there was a noticeable "dry slot" forming and the storm took on a north-south orientation (Figure 3-15-1).

As Kelly approached the cold low (Figure 3-15-2) it slowed and reached maximum intensity. Then suddenly, under the influence of the mid-latitude westerlies just to the north, it abruptly turned and accelerated to the northeast. Although JTWC forecasts indicated recurvature to the northeast would occur, it was not forecast to begin until Kelly reached 35N. It now appears the westerlies were located further south than Figure 3-15-2 indicates. Kelly

Figure 3-15-1. Kelly as an intensifying tropical storm. Kelly was accelerating to the north-northwest at this time (1422592 September DMSP visual imagery).

Figure 3-15-2. Mid-level tropospheric flow
representative of the conditions present during the time Kelly was accelerating to the north and at the time of recurvature to the northeast. The simplified track of Typhoon Kelly is the dashed line 1760000 Z September 500 mb FNOC NOGAPS analysis).
weakened very rapidly after recurvature as the convection began to be sheared. By 171200 z the storm had started to loose its tropical characteristics.

In this phase, Kelly began to demonstrate intensity anomalies frequently observed in storms becoming extratropical. The low central pressures observed did not correspond well with the relatively weak winds found by aircraft reconnaissance. On
the other hand, since the central convection had nearly disappeared, the Dvorak intensity model estimated winds significantly lower than what was observed by aircraft. By 1800002 Kelly had completed its extratropical transition and the final warning was issued. The remnants of Kelly continued to the northeast and were locatable on satellite imagery until the 2lst. By then the system was east of the International Dateline and moving into the Gulf of Alaska.

After Typhoon Ike moved inland over China early on 6 September, strong surface ridging from the subtropical ridge kept easterlies across much of the tropical Northwest Pacific. By mid-September, the ridging began to give way to the southwest monsoon. This helped set the stage for the Sevelopment of Tropical Storm Lynn.

Abstract

The disturbance that would eventualiy become Lynn was first noticed as an area of poorly organized convection near Guam on 19 September. During the following three days the area of convection moved west across the northern Philippine Sea with little development noted. The convection was apparently associated with a westward moving TUTT cell. As the TUTT cell weakened east of Luzon, divergence from an upper-level anticyclone north of Guam, which was ridging westward, maintained the convection. By the 22nd, a second upper-level anticyclone had developed just northeast of Luzon near the disturbance and the convection began to increase. During this entire time, surface synoptic data indicated only convergent easterly trades

 were present beneath the convection.At 230000Z, the convection entered the South China Sea. At the same time, a lee side low-level cyclonic circulation formed in the monsoon trough just west of Luzon, apparently the result of persistent easterly flow across the mountainous terrain of northern Iuzon. This provided the low-level circulation which would accelerate the development of Tropical Storm Lynn.

During the next several hours the disturbance rapidly consolidated. Ship reports indicated the surface circulation had 10 to $20 \mathrm{kt}(5$ to $10 \mathrm{~m} / \mathrm{s}$) winds with an MSLP estimated at 1003 mb . The associated convection showed a significant increase in development as it tried to organize near the low-level circulation. In addition, a cutoff low over southern China was enhancing the outflow from the anticyclone northeast of Luzon. Based on this collective information, the Significant Tropical Weather Advisory (ABEH PGTW) was reissued at 231000 Z to include this disturbance as a suspect area. The potential for significant tropical cyclone development was assissed as "fair".

During the next nine hours, the tropical disturbance continued to show signs of increased organization on satellite imagery. At 2318002, imagery indicated that a central area of intense convection had formed. Synoptic data showed the disturbance now had winds of 20 to $30 \mathrm{kt}(10$ to $15 \mathrm{~m} / \mathrm{s}$). Based on these developments a TCFA was issued at 2319002 .

The first warning on Lynn as a tropical depression was issued at 2406002 when satellite imagery indicated that the convection was moving over the low-level circulation center and intensifying. The first few warnings forecast Lynn to slowly intensify and move to the west-northwest. This forecast track was based on guidance from the One-Way Interactive Tropical

Cyclone Model (OTCM) During the next 18 hours lynn did intensify some, reaching tropical storm strength at 2418002 and peaking at $40 \mathrm{kt}(21 \mathrm{~m} / \mathrm{s})$ at 250000 z . After that point in time, since Lynn had been moving slowly west-southwest away from the upper-level anticyclone northeast of Luzon, it lost its upper-level outflow and entered a shearing environment. This resulted in a displacement of the convection to the north of the low-level circulation center and the start of a weakening trend (Figure 3-16-1). In addition to the shearing, the enhancement of the anticyclonic outflow by the cut-off low over southern China had now ceased as the low dissipated at about 2500002 .

At 06002 on the 25 th, it was apparent that Lynn had become a sheared system and that no further intensification would likely occur. The closest convection was located more than $120 \mathrm{~nm}(222 \mathrm{~km})$ to the northeast. Lynn was now expected to follow a westsouthwest track along the northern periphery of the low-level monsoon trough until it dissipated over central Vietnam. Tropical Storm Lynn posed no further forecast problems after that except for the difficulty in positioning the exposed low-level circulation center at night.

During the twenty-four hours prior to landfall, Lynn did experience a flare-up of its convection. Synoptic data at 0000 z on the 27 th showed that the upper-level anticyclone had reformed near Hainan Island and that the flow over Lynn had become weak but diffluent. Also possibly contributing to this convective flare-up prior to landfall was convergence of the low-level flow and orographic lifting: both caused by the mountainous terrain inland of the Vietnam coast. After making landfall $50 \mathrm{~nm}(93 \mathrm{~km})$ southeast of Da Nang (WMO 48855) Lynn turned northwest dissipating along the Vietnam/Laos border after 271800z. There were no reports of damage or injuries from Tropical Storm Lynn.

Figure 3-16-1. Tropical Storm Lymn being sheared. The exposed low-level circulation is southwest of the main convection 12502232 September DMSP visual imagery).

During a four week period extending from the last week of September until the midale of October, a large amplitude long wave trough persisted in the western North Pacific. This trough weakened the subtropical ridge and displaced it to the east of its climatological position. As a result, tropical cyclones developing in the western North Pacific would accelerate to the north and recurve almost as soon as they developed. Tropical Storm Maury was the first of five storms to develop in the western North Pacific during this period. As would be the case with the four storms after it, Maury failed to show any significant westward movement prior to accelerating to the north and recurving.

Tropical Storm Maury formed near Marcus Island (Minami Tori-Shima (WMO 47991)) at approximately the same time that Tropical Storm Nina was developing some 700 nm (1296 km) to the west-southwest. Nina's proximity would ultimately have a significant influence on Maury's future.

Maury was originally detected early on 27 September as an area of developing convection on the northeast extension of the monsoon trough. Initially the trough was linked to the trailing end of a midlatitude front and this may have supplied some low-level vorticity which aided in the
rapid development of the system.
The disturbance was first discussed on the 270600 Z Significant Tropical Weather Advisory (ABEH PGTW) as one of several weak circulations embedded in the trough. During the next 10 hours it became evident that only two circulations would dominate. Consequently the ABEH was reissued at 271600 Z to indicate this concern. These two circulations would soon develop into Maury and Nina respectively.

The disturbance continued to develop at a rapid pace; much faster than JTWC anticipated. Dvorak intensity analysis performed on the 2718002 imagery indicated that $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$ winds were present. The imagery over the area two hours later showed that a well-defined compact low-level circulation center had developed. Consequently, a TCFA was issued at 2723002. At 272341Z, Dvorak analysis of Figure 3-17-1 indicated that 35 kt ($18 \mathrm{~m} / \mathrm{s}$) winds were now present in this rapidly developing system. Based on the satellite intensity analysis, JTWC issued the first warning on Maury as a 35 kt ($18 \mathrm{~m} / \mathrm{s}$) tropical storm at 2800002. Synoptic data during this period was unable to shed any light on the true intensity of Maury.

Figure 3-17-1. A compact Tropical Storm Maury just prion to issuance of the first warning. Dvorak intensity analysis of this imagery indicated that $35 \mathrm{kt}(18 \mathrm{~m} / \mathrm{s})$ surface winds were present. This prompted ITWC to warn on this storm. The much larger Tropical Storm Nina is developing to the west (2723412 September DMSP visual imagery).

The first aircraft reconnaissance, conducted early on the 28th, quickly found the well-defined circulation center at 2803032 and reported that Maury was stronger than expected. Maximum surface winds of $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ were found both southwest and northeast of the center. Consequently, the 280000 warning was ammended to reflect these higher wind speeds.

During the next 30 hours, Maury moved slowly west, then northwest and further intensified reaching its peak intensity of $60 \mathrm{kt}(31 \mathrm{~m} / \mathrm{s})$ at 290600 z . From now on the movement and intensity of Maury would be governed primarily by the much larger Tropical Storm Nina.

The upper-level anticyclone which was located just east of Nina exerted considerable pressure on Maury's convection from the start. The large anticyclone brought strong northerly upper-level winds over Maury which displaced the convection to the south. As a result, Maury's low level circulation center was consistently located near the northwest edge of the convection (Figure 3-17-1). This strong wind shear prevented Maury from ever attaining typhoon strength.

In addition to affecting Maury's intensity, these strong winds aloft may also have been responsible for oreventing Maury from turning to the north on 27 and 28

Figure 3-17-2. The exposed low-Level circulation of Maury is now located just northwest of the main convection. Nina which by now had weakened to 30 kt $(15 \mathrm{~m} / \mathrm{s})$, is located almost due west $(3000422$ September DMSP visual imageryl.

September. It is likely that the outflow from the anticyclone descended and generated a weak mid-level induced ridge north of Maury which temporarily prevented any significant movement of the storm until Nina had moved further north.

On 29 September, Nina began to move northeast and approach Maury. This brought Maury under the influence of Nina's large low-level inflow. As a result, the weak ridge eroded and Maury began to accelerate to the north. As Maury accelerated to the north, the strong upper-level winds continued to displace Maury's convection away from the low-level center. This caused Maury's low-level circulation to become exposed (Figure 3-17-2) and marked the start of the weakening trend. The subtropical ridge located to the east of Maury was also a factor contributing to the acceleration. With these two factors combined, Maury reached a top speed of $26 \mathrm{kt} \mathrm{(} 48 \mathrm{~km} / \mathrm{hr}$) between $300600 z$ and 3012002 .

The presence of the subtropical ridge dominated the JTWC forecast philosophy from the start. Maury was forecast to move around the ridge and recurve to the northeast. The actual movement was fairly close to the predicted track, although forecasting the speed of movement and the latitude of recurvature was difficult due to the influence of Nina.

Figure 3-17-4. Imageny of Tropical Storm Nina just after the reconnaissance flight in Figure 3-17-3 was conducted. Maury is not locatable 10100222 October DMSP visual imagery).

At 3012002, Maury was approximately $320 \mathrm{~nm}(593 \mathrm{~km})$ northeast of Nina. Both storms were now moving to the northeast around the subtropical ridge. Instead of accelerating to the northeast like storms normally do, Maury slowed since it had entered Nina's larger circulation. With Nina moving to the northeast at 28 kt $(52 \mathrm{~km} / \mathrm{hr})$ it took less than 12 hours to catch Maury and assimilate it into its circulation.

Maury was no longer identifiable on satellite imagery after 301831z; however, aircraft reconnaissance several hours later was still able to locate both Maury and Nine (Figure 3-17-3). Satellite imagery at this time however, showed that only one storm, Nina, was present (Figure 3-17-4). At 010000 z , with Maury's continuation as a separate system highly unlikely, the final warning was issued.

Figure 3-11-3. Atthough Tropical Storm Maury was no longer identifiable on satellite imagers, aircraft reconnaissance late on the 30th was still able to locate the storm's center. Wind and height data are from the 700 mb level. "MFW" represents the maximum observed flight level winds and "MSW" represents the maximum observed surface winds. The arrows uith wind direction and speed represent the surface winds at that point. The number on the wind barb represents the tens digit of the 700 mb wind direction.

Tropical storm Nina was the third tropical storm to develop in the monsoon trough during the latter half of September. Despite originating in a region favorable for cyclogenesis, Nina never intensified beyond $55 \mathrm{kt}(28 \mathrm{~m} / \mathrm{s})$. This was due to the inability of an upper-level anticyclone to persist over the storm. The last phase of Nina's life was noteworthy due to the storm's reintensification and assimilation of Tropical Storm Maury into its circulation.

On the 25 th of September, a midlatitude frontal system moved across the western North Pacific. As the front passed north of the monsoon trough, the trough was pulled to the northeast on the 26 th. At 2700002 , the trough extended from the central Philippine Sea northeast to near Marcus Island (Minami Tori-Shima (WMO 47991)) where it became connected with the trailing edge of the cold front. Embedded in this trough were several weak circulations; most noticeable were the ones northeast and northwest of Guam. These would later develop into Tropical Storms Maury and Nina respectively.

Synoptic data at $270000 z$ indicated a closed 1004 mb circulation had formed 500 nm $(926 \mathrm{~km})$ north-northwest of Guam. The convection associated with the disturbance was poorly organized, but a large upperlevel anticyclone north of Guam was providing good outflow channels to the south and east.

During the following twelve hours the circulation and the associated convection moved north and consolidated. At 2712002 numerous ship reports indicated the system had intensified and was detaching from the trough. Tropical cyclone development during the next 24 hours now became a distinct possibility. Consequently, the Significant Tropical Weather Advisory (ABEH PGTW) was reissued at 2716002 upgrading the potential for development of this disturbance to "fair". This was followed by a TCFA at 2720302 based on satellite imagery which showed the disturbance was consolidating and becoming comma shaped.

The first aircraft reconnaissance flight into Nina took place late on the 27 th and found only a sharp trough oriented northeast to southwest with an MSLP of 998 mb . However, a band of 30 to 40 kt (15 to $20 \mathrm{~m} / \mathrm{s}$) winds were observed south of the trough axis. This prompted the issuance of the first warning at 280000 z .

During the following 24 hours, Nina moved slowly north reaching an intensity of $45 \mathrm{kt}(23 \mathrm{~m} / \mathrm{s})$ at 281200 z . Nina failed to develop a central dense overcast (CDO) as would be expected with normal tropical cyclone development. Instead, due to the displacement of the upper-level anticyclone to the east of the low-level circulation,

Figure 3-18-1. The broad exposed low-level circulation of Tropical Storm Nina 12901027 September NOAA visual imageryl.

Nina more closely resembled a subtropical system. The convection was located poleward and eastward of the low-level center, and the radius of maximum winds was removed from the center. In addition, recomniassance aircraft found only sight temperature increases at the center.

This displacement of the convection north and east of the low-level center introduced uncertainty in the storm's position on the night of 28 September when the low-level circulation was poorly defined. Analysis of satellite imagery indicated that the upper-level circulation center passed east of Iwo-Jima (WMO 47981). but the surface winds at Iwo-Jima remained from the southeast until about 2818002. This clearly indicates the surface circulation passed west of the island. During this time, synoptic data was essential in fixing the surface center since
the low-level center was not locatable on satellite imagery.

Early on the 29th, Nina entered the westerlies and the convection was displaced even further to the east remaining under the strongest upper-level diffluence. This resulted in a weakening of the storm. The broad low-level circulation was now continuously exposed, generally 100 to 180 nm (185 to 333 km) west of the main convection (Figure 3-18-1).

By early on the 30th, Nina had weakened to depression strength with reconnaissance aircraft unable to locate the low-level circulation center and satellite imagery indicating several possible low-level circulation centers. Nina was now forecast to dissipate over water during the next 12 to 24 hours. However, this weakening was to be temporary.

Figure 3-18-2. Tropical Storm Nina at maximum intensity. Maury is now assinilated into Nina's circulation $(0100222$ October DMSP visual imagery).

Between 3006002 and 3018002 , the lowlevel circulation moved rapidly northeast under the active convection resulting in a rapid reintensification of Nina. During this intensification, Tropical Storm Maury became incorporated into the larger circulation of Nina. However, there is no evidence to indicate that this intensification was due to the presence of Maury. At 00002 on 1 October, Nina reached maximum
intensity of $55 \mathrm{kt} \mathrm{(28} \mathrm{m/s)} \mathrm{(Figure} \mathrm{3-18-2)}$.
Early on the first of October, extratropical transition began. The convection rapidly decreased during the day as Nina continued to the northeast. Nina became extratropical between 0112002 and 0115002 , with the final warning being issued at 0118002 .

Typhoon Ogden was the first of a series of eight tropical cyclones during the month of October which established a new record for northwest Pacific tropical cyclone activity for that month. Ogden like the two storms before it, moved almost due north from the time it developed until it began to recurve. Ogden had great difficulty in becoming vertically aligned and would probably never have attained typhoon intensity if it had not accelerated after recurvature thereby adding the translation speed of movement to the storm's wind field.

The disturbance that developed into the eighth typhoon of the season was initially detected as a weak surface circulation west of Truk (WMO 91334) on the 3rd of October. No significant convection directly associated with the circulation was evident on satellite imagery at the time. The disturbance moved to the northwest over the next 18 hours and became part of the eastward extension of the resurging southwest monsoon trough. Synoptic data at 0400007 indicated a 10 to 20 kt (5 to $10 \mathrm{~m} / \mathrm{s}$) surface circulation was present, with an MSLF near 1008 mb . The persistence of the circulation prompted its inclusion in the 0406002 Significant Tropical Weather Advisory (ABEH PGTW).

The monsoon trough began to extend northwestward on the 4 th as it had a week earlier when Tropical Storms Maury and Nina developed. As the circulation became embedded in the trough, the disturbance followed the trough orientation and tracked to the northeast. Some poorly organized convection associated with the surface circulation could now be detected on satellite imagery. Upper-level flow up to this time was weak but generally diffluent.

On 5 October, the convection indicated a further improvement in organization and was now consolidating in the northeast

Figure 3-19-1. Ogden at the time the first warning was issued. Dvorak intensity analysis indicated that $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$ surface winds were present $(0700022$ October DMSP visual imagery).
periphery of the monsoon trough, several degrees northeast of the surface circulation. An upper-level anticyclone was also observed to be developing over the disturbance. Early on the 6th, the convection moved slightly southwest and continued to increase in size and organization. This brought the low-level circulation in closer proximity to the mid and upper-level features.

It was determined from sparse synoptic data at 0600002 that the circulation had turned more northward with an MSLP likely below 1004 mb . This led to the issuance of a TCFA at 060400z. At 060600z, a ship near the disturbance's center reported a 1002 mb pressure to confirm the earlier analysis.

The first of seven aircraft reconnaissance flights into Ogden occurred early on 6 October. A surface center was not located but a sharp low-level trough oriented northeast to southwest with an MSLP of 1000 mb was evident. Maximum sustained winds of 20 kt ($10 \mathrm{~m} / \mathrm{s}$) were reported southeast of the trough axis. The second aircraft reconnaissance mission closed-off a circulation center at 0622272 with an MSLP of 999 mb and reported $15 \mathrm{kt} \mathrm{(} 8 \mathrm{~m} / \mathrm{s}$) winds near the broad center. Winds of 35 kt ($18 \mathrm{~m} / \mathrm{s}$) were found approximately 170 nm (315 km) east-northeast of the center associated with the tight pressure gradient between the developing Ogden and the subtropical riage to the northeast. Intensity estimates from satellite analysis at this time indicated surface winds of 25 kt ($13 \mathrm{~m} / \mathrm{s}$) were present. Although the disturbance was still located within the monsoon trough, satellite data indicated the system was moving north and separating from the trough. This in combination with the aircraft data prompted the issuance of the first warning on Ogden as a $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$ tropical depression at 0700002 (Figure 3-19-1).

Over the next 24 hours, Ogden tracked around the southwest periphery of the midPacific ridge. The ridge was retreating eastward in advance of a mid-latitude trough approaching from Japan. Although the first four JTWC warnings forecast eventual recurvature to the northeast, the actual recurvature was much sharper than anticipated, with significant acceleration occurring during the first twenty-four hours of the forecast period. This was due to the mid-latitude trough moving east faster than anticipated, resulting in a more rapid retreat of the mid-Pacific ridge. This quickly put ogden under a southwesterly steering flow.

At approximately 071600z, Ogden obtained tropical storm intensity. At this time, Ogden was already accelerating to the northeast. Part of the storm's intensification during the next 30 hours would be a result of the forward translational speed being added to the true wind speed. This would consistently put the stronger winds in the southeast semicircle.

The only land affected by Ogden was Marcus Island (Minami Tori-Shima (WMO
47991)). Ogden passed just to the east of the island at approximately 0802002. The island was subjected to the weaker, northwest semicircle of the storm, and as a result, no damage was reported. The highest known wind occurred at 0800002 when northeast winds of $27 \mathrm{kt}(14 \mathrm{~m} / \mathrm{s})$ were observed. At the same time the sea-level pressure was 990.3 mb . Only two hours earlier, aircraft reconnaissance reported an MSLP in Ogden of 993 mb . This suggests that the intensifying surface center passed very close to the island.

At 12002 on 8 October, the midlatitude westerlies began to accelerate Ogden to the northeast in earnest and Ogden began its transition to an extratropical low as it attained typhoon intensity (Figure 3-19-2). A combination of the extratropical transition and a 20 kt ($37 \mathrm{~km} / \mathrm{hr}$) northeast movement contributed to an expanded asymmetric wind field and to the typhoon force winds in the southeast semicircle. Aircraft reconnaissance at 0821322 reported $70 \mathrm{kt} \mathrm{(} 36 \mathrm{~m} / \mathrm{s}$) surface winds $30 \mathrm{~nm}(56 \mathrm{~km})$ from the surface center in the southwest and southeast quadrants.

Figure 3-19-2. Typhoon Ogden near maximum intensity. Ogden was already beginning its extratropical transition at this time 10823212 Dctober DMSP visual imageryl.

The ARWO also verified that extratropical transition had commenced. Stratiform clouds were observed in the surface center and a 10 nm (19 km) northeast tilt was present from the surface to the 700 mb center. In addition, the measured MSLP was only 993 mb . This would normally support winds of $55 \mathrm{kt}(28 \mathrm{~m} / \mathrm{s})$ according to Atkinson-Holliday (1977) pressure-wind curve. This discontinuity is often observed during extratropical transition.

The southwesterlies continued to shear Ogden as it accelerated to the northeast, further separating the 700 mb and upperlevel centers from the surface center. Ogden weakened to tropical storm strength approximately twenty-four hours after it obtained typhoon strength, even though
maximum sustained winds of $77 \mathrm{kt}(40 \mathrm{~m} / \mathrm{s})$ were indicated from satellite imagery. The satellite intensity estimates at this time were based on the Dvorak model of a subtropical system. Consequently, Ogden's 25 kt ($46 \mathrm{~km} / \mathrm{hr}$) movement was directly added to the initial model intensity. It was apparent on satellite imagery at 00002 on 10 October that Ogden had lost all convection and had completed its extratropical transition. It still supported 55 $\mathrm{kt}(28 \mathrm{~m} / \mathrm{s}$) winds and had a 32 kt ($59 \mathrm{~km} / \mathrm{hr}$) northeast movement. At this time, the final warning was issued. The upper-level center was located more than one degree northeast of the surface center based on satellite imagery. The remains of Ogden continued northeast towards the International Dateline as an extratropical storm.
Φ

Typhoon Phyllis was the first of four significant tropical cyclones to develop in the monsoon trough during a two day period. Three of these would form in WESTPAC, with the fourth, Tropical Cyclone 02B developing in the Bay of Bengal. Of the four, Phyllis was by far the strongest, reaching a maximum intensity of 80 kt ($41 \mathrm{~m} / \mathrm{s}$). However, despite its strength, Phyllis caused no reported damage as it remained over water throughout its life.

As an intenisfying Typhoon Ogden began to accelerate to the northeast on 7 October, a broad area of troughing and low-level convergence persisted in its wake. By late on the 7 th, the seedling of Phyllis was being analyzed as a weak surface circulation embedded in the trough east of Guam. During the next day-and-a-half, the disturbance
drifted to the northeast with no significant development noted. Figure 3-20-1 depicts the surface situation at $090000 z$ as Phyllis finally began to develop. A broad trough extends southwest from Typhoon Ogden across Guam and into the Philippine Sea. Embedded in this trough are two circulations; one to the northeast and one to the southwest of Guam. These would later develop into Typhoon Phyllis and Tropical Storm Roy respectively.

Although surface synoptic data was sparse near the circulation northeast of Guam, satellite imagery during the 9 th and into the loth indicated that a compact circulation was developing. This resulted in a TCFA being issued at 100630 Z . At the time the TCFA was issued, Dvorak intensity analysis indicated that surface winds of $25 \mathrm{kts}(13 \mathrm{~m} / \mathrm{s})$ were present.

Figure 3-20-1. Surface analysis at the time Typhoon Phyllis and Tropical Storm Roy began to develop (0900002 October 1984).

The first warning on Phyllis was issued at 1100002 after satellite imagery indicated the disturbance had intensified further and now supported winds of $35 \mathrm{kt}(18 \mathrm{~m} / \mathrm{s})$. By now Phyllis had nearly detached from the trough and would soon begin to accelerate to the north. During the next twenty-four hours Phyllis intensified rapidly reaching typhoon strength by 1200002 . The upgrade to typhoon status was based upon reports from reconnaissance aircraft and from Dvorak intensity analysis of Figure 3-20-2.

Phyllis continued to strengthen reaching a maximum intensity of $80 \mathrm{kt} \mathrm{(} 41 \mathrm{~m} / \mathrm{s}$) twelve hours later at l212002. At the time Phyllis attained its peak intensity, it was located under a well-defined synoptic scale anticyclone (Figure 3-20-3). This anticyclone provided good outflow to all quadrants of the storm. As Phyllis moved north, however, the anticyclone would remain quasi-stationary
near Marcus Island (Minami Tori-Shima (WMO 47991)). As a result, less than twelve hours later Phyllis would enter the 50 to 70 $k t$ (26 to $39 \mathrm{~m} / \mathrm{s}$) westerly flow and begin to shear and weaken.

Typhoon Phyllis maintained a predominantly northward track from the time it separated from the monsoon trough until it began to dissipate. The initial movement northward was a result of Typhoon Ogden weakening and displacing the subtropical ridge to the east. As Phyllis began to move north, a digging mid-latitude shortwave formed a vigorous cut-off low south of Honshu. This allower the ridge east of Phyllis to rapidly build back northward, keeping Phyllis under a strong southerly steering flow. This southerly flow resulted in Phyllis accelerating to the north and prevented the typhoon from following a more typical recurvature track to the northeast.

Figure 3-20-2. Phyllis at the time it was upgraded to typhoon intensity. Duorak intensity analysis of this imagery indicated that surface winds of 65 kt $(33 \mathrm{~m} / \mathrm{s})$ were present (1200022 October DMSP visual imagery).

Figure 3-20-3. 200 mb analysis at the time Typhoon Phyllis attained maximum intensity. The synoptic scale anticyclone is located directly over Phyllis. The mid-level cut-off low south of Honshu extended through the 200 mb level (1212002 October 1984).

As Phyllis passed north of 25 N , the cut-off low with its associated frontal system began to accelerate to the northeast. At the same time, Phyllis began to encounter the strong upper-level westerlies and the convection was displaced to the east of the low-level circulation (Figure 3-20-4). Phyllis responded by weakening at an even faster rate than it had earlier intensified.

The last aircraft reconnaissance mission was flown into Phyllis late on 13 October and found only a trough at the 700 mb level where less than twelve hours earlier, a well-developed circulation existed. At the surface, however, the

Figure 3-20-4. Typhoon Phyllis as it began to weaken under strong upper-level wind shear. Note the extratropical low with its associated frontal system to the west 11223422 October DMSP visual imageryl.

aircraft still found a 999 mb surface circulation. Satellite imagery at nearly the same time showed a broad low-level circulation center defining the remnants of Phyllis (Figure 3-20-5). All the convection had been displaced to the northeast. At 140000 , the final warning was issued as Phyllis became indistinct from the cold front transiting through the region. There were no reports of damage from Phyllis although Marcus Island (Minami ToriShima (WMO 47991)) did report 20 to 30 kt (10 to $15 \mathrm{~m} / \mathrm{s}$) winds for almost two days as Phyllis passed some $150 \mathrm{~nm}(278 \mathrm{~km})$ to the west.

rigure 3-20-5. Phyllis as it merged with and became indistinct from a cold front. All that remained of Phyllis was a broad low-level circulation center (1323212 October DMSP visual imagery)

Tropical Storm Roy developed in the monsoon trough southwest of Guam at the same time that Typhoon Phyllis was developing further to the northeast. Despite forming in an area climatologically favorable for tropical cyclone development, Roy was unable to persist. Strong upper-level wind shear resulted in a rapid weakening and eventual dissipation of the storm after only two days in warning status.

Early on 9 October, a weak circulation was first analyzed in the monsoon trough southwest of Guam. Development of the disturbance was slow during the next twentyfour hours due to strong wind shear from the upper-level outflow of Typhoon Ogden. By early on the loth, Ogden's influence had lessened which resulted in the convection over the disturbance increasing and becoming more organized. At 1004002, Dvorak intensity analysis of the convective banding indicated that 25 kt ($13 \mathrm{~m} / \mathrm{s}$) surface winds were present. This prompted the issuance of a TCFA at 100700 Z .

During the development stage no upperlevel anticvclone was detected over the disturbance, although the flow did become diffluent. As it turned out, Roy never
developed an upper-level anticyclone. This inability to develop a good outflow pattern would ultimately be responsible for Roy's quick dissipation.

The first aircraft reconnaissance mission into the system found a small 1000 mb center at 110046 Z located approximately $90 \mathrm{~nm}(167 \mathrm{~km})$ west-southwest of Guam. Winds of $15 \mathrm{kt}(8 \mathrm{~m} / \mathrm{s})$ were found around most of the center except for a small area of 30 kt ($15 \mathrm{~m} / \mathrm{s}$) winds in the southeast quadrant. The aircraft position of the disturbance's center confirmed what satellite imagery indicated - that the system had turned to a more northerly heading from the steady northeast course of the previous two days. This meant Roy would pass safely to the west of Guam.

Based on the data obtained by reconnaissance aircraft and the expectation for further intensification, the first warning was issued at 110227 Z , valid at 110000 Z (Figure 3-21-1). Later that afternoon the second reconnaissance flight found Roy had indeed intensified. The MSLP had decreased to 998 mb and minimal tropical storm force winds existed 20 to $30 \mathrm{~nm}(37$ to 56 km$)$ from the center.

Figure 3-21-1. Roy just before the first warning was issued. The partially exposed Row-level circulation center is visible on the eastern edge of the main convection. The island of Guam located 110 nm $(204 \mathrm{~km})$ to the northeast is completely cloud-free (1021522 October NOAA visual imagery).

Figure 3-21-2. Tropical Storm Roy as an exposed low-level circulation center is located southeast of the convection (120002Z OMSP visual imagery).

As it turned out, these would be the strongest winds observed in Roy. Roy passed $80 \mathrm{~nm}(148 \mathrm{~km})$ west of Guam as a minimal tropical storm, but caused no damage to the island. The Naval Oceanography Command Detachment (NOCD) at Brewer Field, NAS Agana, recorded maximum winds of only $14 \mathrm{kt} \mathrm{(} 7 \mathrm{~m} / \mathrm{s}$) during Roy's passage.

As Roy moved to the north-northeast, strong easterlies from the synoptic scale anticyclone that was nearly co-located with the developing Typhoon Phyllis began to shear the storm. In addition, much of the monsoon flow which had earliex been directed into Roy was now feeding into the stronger Typhoon Phyllis. This began a weakening trend which continued until Roy's dissipation less than 36 hours later.

During the next twenty-four hours, Roy
dia make several attempts to redevelop its convection about the low-level circulation center, but due to the strong shear, every attempt was doomed to fail. By the 12 th, Roy had become an exposed system with the overall convection decreasing (Figure 3-21-2). However, it was at this time that the lowest MSLP was observed. At 1205312, reconnaissance aircraft recorded an MSLP of 996 mb . Despite the lower pressures, no surface winds above 20 kt ($10 \mathrm{~m} / \mathrm{s}$) were reported.

Late on the l2th, the last mission into the dissipating Roy was flown. It was unable to locate any circulation center and observed surface winds of 5 to 15 kt (3 to $8 \mathrm{~m} / \mathrm{s}$). This prompted the final warning to be issued at 130000 z as Roy dissipated over water.

Tropical Storm Susan was the third of four significant tropical cyclones to develop in the monsoon trough in less than two days. During a brief existence Susan caused considerable damage to central Vietnam despite only intensifying to 40 kt ($21 \mathrm{~m} / \mathrm{s}$).

Occasionally, when a typhoon is active in the Philippine Sea a "sympathetic" storm will form in the South China Sea. Recent examples of such storm pairs are Abby/Carmen and Orchid/Percy from the 1983 season. The mechanism at work in these cases is a combination of excess vorticity and convergence at low-levels, found around circulation centers embedded in the monsoon trough, and upper-level ventilation due to the divergence in the outflow downstream (west) of the dominant typhoon in the Philippine Sea. These "sympathetic" storms often exhibit erratic movement and are the victims of significant upper-level shearing. Intensification beyond minimal typhoon strength is unusual.

As a first impression, one might
assume that this scenario was valid in the icase of Tropical Storm Susan. The surface situation present as Susan was forming is shown in Figure 3-22-1. The monsoon trough extends from the Marshall Islands across Micronesia, the Philippines, Southeast Asia and into the Bay of Bengal. Embedded within this trough is the precursor of Tropical Cyclone 02B in the Bay of Bengal, the depression that is soon to be Susan in the South China Sea and the short-lived Tropical Storm Roy just west of Guam. Tropical Storm Phylilis (soon to be typhoon Phyllis) had recently separated from the trough and was accelerating to the north. The first impression, however, is incorrect in this case. Susan was not a sympathetic storm induced by either of the storms to the east, but was instead a completely independent system. The inflow patterns about Roy and Phyllis disrupt each other whereas the flow around Susan dominates the entire South China Sea and controls much more mass than the other two. Given time and more open ocean, Susan would probably have become the most intense of the four systems.

Figure 3-22-1. The 1112002 October surface/gradient level analysis during the formative stage of Tropical Storm Susan.

The upper-air pattern present during the development stage of Susan is shown in Figure 3-22-2. The anticyclone over the South China Sea is well-formed and distinct from one northeast of Guam. In fact, the upper-level anticyclone over the Pacific Ocean does not resemble the typical outflow pattern from a tropical storm. The system is much more representative of the climatological synoptic scale high. The overall pattern shows clearly that Susan developed on its own merits and not as a result of a "sympathetic" reaction.

The disturbance, which would later develop into Susan, was first noticed on 10 October as a loosely defined but very broad low-level circulation in the central South China Sea. Synoptic data showed that winds of 10 to 20 kt (5 to $10 \mathrm{~m} / \mathrm{s}$) were present
with the disturbance. The inflow pattern covered a very large area and was slow to consolidate. During this consolidation period the system remained nearly stationary.

By $110600 z$ the system had started to accelerate to the west along the axis of the monsoon trough. The convection and organization had both increased significantmy, resulting in the issuance of a TCFA at li o7302. By now winds near the center were 20 to $25 \mathrm{kt}(10$ to $13 \mathrm{~m} / \mathrm{s})$. The storm continued to develop as it moved quickly to the west-northwest, with the first warning issued at 1118002. Susan made landfall as a 35 to 40 kt (18 to $21 \mathrm{~m} / \mathrm{s}$) tropical storm just north of Na Prang, Vietnam (WMO 48877) some 16 hours later (Figure 3-22-3). After landfall, Susan turned northwest and

Figure 3-22-2. The 1100002 October 200 mb analysis. The upper-level anticyclone over the South China Sea is an independent system. It was not formed by the outflow pattern of the two tropical storms near Guam. (The 1112002200 mb analysis had insufficient data to conduct a meaningful analysis).
transited up the Mekong Valley. Even though Susan dissipated as a significant tropical cyclone at 130000 Z , its remnants were still evident three days later as an area of convection just to the west of Hanoi (WMO 48820). Initial reports indicate 33 people were killed and some 68,000 families left homeless due to the heavy rains and floods which accompanied Susan. Thousands of hectares of ripening autumn rice were also reported destroyed.

In summary, although Susan was simultaneously active with three other tropical cyclones, analysis proves that it was not a sympathetic storm induced by the inflow/outflow patterns of its companions. Susan started as a very broad system embedded in the monsoon trough and stayed in the axis of the through as it moved inland over Vietnam. Once over land it recurved to the north but was identifiable for several more days.

Figure 3-22-3. Tropical Storm Susan near maximum intensity. The storm made landfall over coastal Vietnam two hours later 11208222 October NOAA visual imagery).

Tropical Depression $23 W$ was a shortlived system which developed in the monsoon trough. The lack of upper-level support resulted in dissipation only 18 hours after it became a significant tropical cyclone.

After the dissipation of Typhoon Phyllis on 14 October, the low-level monsoon trough still extended from Southeast Asia to the Marshall Islands. At 150000 Z , the upperlevel wind-flow was similar to the pattern present several days earlier, with a large anticyclone located near Marcus Island (Minami Tori-Shima (WMO 47991)). In addition, a westward moving TUTT cell was now located near 18N 172E. At this time the convection associated with the monsoon trough showed little organization. Upper-level flow over the area was generally easterly, with northeast flow inhibiting convective development along the northern side of the low-level trough.

Early on the l6th, the convection began to show signs of increased organization. This was especially evident near the island of Truk (WMO 91334), where the eastward extension of the monsoon trough and the strongest low-level cyclonic turning were located. Synoptic data at this time indicated a 1005 mb surface circulation was present. The Significant Tropical Weather Advisory (ABEH PGTW) at 160600 z mentioned this area as having a "fair" potential for significant tropical cyclone development.

Satellite imagery during the next 18 hours showed the convection had become more organized with the development of a central convective feature. Synoptic data revealed sea-level pressures of 1003 mb to 1006 mb around the periphery of the circulation with the central pressure estimated to be near 1000 mb . These developments prompted the issuance of a TCFA at 1700007 . Upper-level data indicated the flow was now slightly diffluent as the disturbance was located in
the TUTT axis.
An investigative reconnaissance flight into the disturbance closed-off a surface circulation at 1706002 and reported maximum surface winds of $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$. The MSLP had decreased to 998 mb . Since further development was expected, the first warning on Tropical Depression 23W valid at 1706002 was issued a short time later (Figure 3-23-1).

During the next 18 hours, Tropical Depression 23W moved northwest and weakened rather than intensified. Aircraft reconnaissance at 1720302 could not locate a surface circulation, but instead observed winds which indicated that a much larger circulation was developing to the southeast. Sonsequently, the final warning on the dissipated Tropical Depression 23W was issued at 180000 Z .

Post-analysis indicates that Tropical Depression 23W dissipated as a result of unfavorable upper-level support. As the poorly organized depression moved westnorthwest along the northern periphery of the low-level monsoon trough, it moved into an area of 30 to 40 kt (15 to $21 \mathrm{~m} / \mathrm{s}$) northerly upper-level winds from the combined effects of the anticyclone (now located near Iwo Jima (WMO 47981)) and the TUTT cell to the northeast. The strong wind shear over the depression created an environment which was unfavorable for tropical cyclone development. In comparison, the area southeast of Tropical Depression 23W was located in a region of diffluent flow with the upper-level TUTT cell to the northeast enhancing the diffluence. Satellite imagery reflected this favorable upper-level outflow as much stronger convection was forming in this area. This area of convection would soon develop into Typhoon Thad.*

Figure 3-23-1. Tropical Depression 23w at the time the first warining was issued. A TUTT cell is located northeast of the depression 11705372 October NOAA visual imageryl.

Typhoon Thad developed southeast of Guam just as Tropical Depression 23W was dissipating several hundred miles to the northwest. Unlike its predecessor, Thad developed under favorable upper-level environment which permitted further intensification. As Thad developed, it tracked steadily to the north-northwest before recurving to the northeast. The typhoon's movement was well forecast except during the initial stages.

Late on 17 October, satellite imagery revéaled that an area of strong convection was developing a few hundred miles southeast of the short-lived Tropical Depression 23W. The development of the convection was aided significantly by the presence of a weakening TUTT cell to the north-northeast which provided strong diffluence aloft over the convection.

Synoptic data at 1800002 confirmed what the last aircraft reconnaissance mission into Tropical Depression 23 W had observed a few hours earlier; that a broad surface circulation was developing near Truk (WMO 91334). This circulation was underneath the developing convection and on the eastern end of the monsoon trough. Synoptic data south of the trough axis indicated the southwest monsoon was reintensifying with numerous 20 to $30 \mathrm{kt}(10$ to $15 \mathrm{~m} / \mathrm{s})$ west winds being reported.

Over the next several hours, the convection rapidly consolidated. In addition, satellite imagery and synoptic data showed an anticyclone was developing aloft providing good outflow to all quadrants. As a result, a TCFA was issued at 180630 z .

During the next 18 hours satellite imagery indicated the disturbance was moving northwest towards Guam. With Dvorak intensity analysis indicating $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ surface winds present and $45 \mathrm{kt}(23 \mathrm{~m} / \mathrm{s}$) surface winds forecast in 24 hours, the first warning on Thad was issued at 190000 .

The initial warning forecast Thad to continue to move to the northwest, pass just south of Guam and gradually turn towards the west-northwest in the 48 to 72 hour period. This forecast was in good agreement with all JTWC forecast aids. Also the NOGAPS analysis and prog series indicated the subtropical ridge had returned closer to its climatological position north of Guam which further convinced JTWC that this track was reasonable.

As it turned out, this forecast would be wrong for two reasons. First, JTWC did not accurately know where the low-level center was located. Second, and more importantly, the subtropical ridge was not nearly as strong nor as far west as indicated in the analysis and prog series. Between 1900002 and 1906002 , as Thad supposedly neared Guam (ผMO 91212), the winds on the island should have veered to the east or southeast. Instead, they
remained from the northeast. But analysis of satellite imagery indicated that Thad was heading directly towards Guam. Clearly something was amiss: JTWC's efforts to locate the surface center were further hampered by maintenance problems which prevented reconnaissance aircraft from penetrating the disturbances center.

At 190728 Z the first aircraft reconnaissance flight into the renter of the disturbance was finally made and quickly settled the discrepency. It located Thad almost 180 nm (333 km) east of Guam with an MSLP of 990 mb . As a result, the 190600 z warning position relocated Thad some 120 nm (222 km) to the northeast! This meant that the storm would now safely clear Guam.

At 2000002, as a now well-developed Thad continued to move to the northnorthwest at 13 to $14 \mathrm{kt}(24$ to $26 \mathrm{~km} / \mathrm{hr})$, it became obvious the storm was not going to turn towards the west. clearly the subtropical ridge was not as well-established nor as far west as the NOGAPS progs had earlier indicated (Figure 3-24-1). JTWC now forecast continued north-northwest movement for the next 24 hours with recurvature to the northeast between 2100002 and 2200002 due to the approach of a mid-latitude trough. As it turned out, this forecast track was excellent, with the speeds of movement after recurvature being only slightly faster than anticipated.

Thad intensified steadily from the time JTWC went into warning status at 190000 Z , until it reached its peak intensity of $120 \mathrm{kt}(62 \mathrm{~m} / \mathrm{s})$ at 211800 z (Figure 3-24-2). By this time Thad had begun to recurve and link-up with a mid-latitude trough. After maintaining the $120 \mathrm{kt}(62 \mathrm{~m} / \mathrm{s})$ intensity for approximately 12 hours, Thad began a slow weakening trend which continued until the storm went extratropical. During this period, Thad accelerated from 16 to 30 kt (30 to $56 \mathrm{~km} / \mathrm{hr}$) as it became embedded in the westerlies. As would be expected with the storms that accelerate after recurvature, the strongest surface winds were consistently observed in the southeast semicircle.

As Thad accelerated to the northeast, strong upper-level westerlies began to displace the upper-level circulation and convection from the surface center. This was confirmed by the 2223102 aircraft reconnaissance fix which found the 700 mb center 28 nm (52 km) east-northeast of the surface center. All significant convection was now located north of the surface center.

On the $23 r d$, Thad lost most of its convection with an exposed low-level circulation center visible on satellite imagery. The final warning on this system was issued by JTWC at 240000Z. Future warnings on the extratropical low were contained in NAVOCEANCOMCEN GUAM extratropical wind warning bulletins (WWPN PGFW).

NOGAPS 700 mb 48 -hour prog VT: 2012002 October

Figure 3-24-1. Comparison of the 48 hour 700 mb NOGAPS prog available to the TDO when the first warning was issued and the verifying analysis. The western extension of the subtropical ridge was forecast to extend west along 26 N to near 130 E . Instead, due to the effects of a digging mid-latitude trough moving into the Sea of Japan, the nidge slid east which allowed Thad to rapidly recurve to the northeast.

Figure 3-24-2. Three views of Typhoon Thad at
maximum intensity: (a) visual imagery (b) Infrared imagery and (c) Enhanced Infrared imagery - Dvorak Tropical Cyclone Curve. $\quad(2200022$ October DNSP imagery).

Super Typhoon Vanessa, the first super typhoon of the 1984 season, also developed into the most intense storm of the year. At peak intensity Vanessa had an MSLP of 879 mb , only 9 mb above the record 870 mb observed in Super Typhoon Tip (1979). Except for a brief period when the storm brushed Guam, Vanessa remained clear of land and generally posed a threat only to shipping.

Super Typhoon Vanessa originated in the Near Equatorial Trough southeast of Ponape (WMO 91348) three days after Typhoon Thad formed some 700 nm (1296 km) further to the west. The disturbance was initially detected on 20 October as an area of convection near 4N 163E. Its rapid development resulted in the Significant Tropical Weather Advisory (ABEH PGTW) being reissued at 201900 z to include this area of convection as a suspect disturbance.

During the 21st and into the 22nd, the area of convection slowly increased in organization as the disturbance moved northwest to just north of ponape. The persistent improvement in organization during this period resulted in the issuance of a TCFA at 220500Z. Sparse synoptic data at the time of the TCFA was only able to confirm the presence of a 10 to 15 kt (5 to $8 \mathrm{~m} / \mathrm{s}$) surface circulation. By now an upper-level anticyclone had developed, providing good outflow to all but the northwest quadrant which was still feeling some effects from the outflow of Typhoon Thad. The first warning on Vanessa was issued at 221800 z when analysis of satellite imagery resulted in an estimate that the disturbance now supported surface winds of $35 \mathrm{kt}(18 \mathrm{~m} / \mathrm{s})$.

From beginning to end, Vanessa followed a very climatological track becoming one of the "great-recurver" storms of 1984. From the time it attained depression strength until it began to recurve, it moved almost due west-northwest. After recurving south of Okinawa, Vanessa underwent a complex transition into an extratropical low east of Japan.

Vanessa's intensity came very close to equalling the records established by super Typhoon Tip in 1979. Figure 3-25-1 shows the MSLP versus time for Vanessa as obtained by reconnaissance aircraft. The pressure dropped 100 mb in a 48 hour period to reach a mininum of 879 mb at 2611142. This is only 9 mb higher than the 870 mb recorded in Tip. (These pressures convert to 155 kt ($80 \mathrm{~m} / \mathrm{s}$) and approximately $165 \mathrm{kt}(85 \mathrm{~m} / \mathrm{s}$) for Vanessa and Tip, respectively, using the Atkinson and Holliday (1977) pressure-wind relationship).

The initial warning forecast Vanessa to move west-northwest and pass over Guam within 48 hours as a $65 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$ typhoon. The accuracy of the first forecasts gave the military and civilian communities on Guam sufficient time to properly prepare. Consequently there was little structural damage on the island and no personal injuries when Vanessa did approach as an 80 kt ($41 \mathrm{~m} / \mathrm{s}$) typhoon. Vanessa's closest point of approach to Guam was 90 nm (167 km) to the south-southwest at 241100 z . Sustained winds above $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ were recorded at numerous locations on the island with a peak gust of $59 \mathrm{kt}(30 \mathrm{~m} / \mathrm{s})$ recorded at the Naval Oceanography Command Center (NAVOCEANCOMCEN) building on Nimitz Hill.

Figure 3-25-1. Time cross-section of Vanessa's minimum sea-level pressure as measured by reconnaissance aircraft. The pressure dropped 100 mb in a 48 hour period reaching a low of 879 mb at 2611142. This is only 9 mb higher than the record 870 mb observed in Super Typhoon Tip in 1979.

Figure 3-25-2. Super Typhoon Vanessa near maximum intensity (2522332 October NOAA visual imagery).

The only significant damage on Guam occurred to vegetation. An estimated 1.7 million dollars worth of crops were lost, principally bananas. Flooding was also reported in the southern coastal areas of the island.

Vanessa continued to intensify and move west-northwest after it passed south of Guam. The dominate synoptic feature was the subtropical ridge north of Vanessa which redeveloped in the wake of Typhoon Thad. Vanessa moved along the southern side of the ridge for nearly five days before recurving. It was just prior to recurvature, at 2612002 that a peak intensity of 155 kt ($80 \mathrm{~m} / \mathrm{s}$) was attained (Figure 3-25-2). The ARWO flying the 2611142 fix mission that observed the 879 mb MSLP, described the $10 \mathrm{~nm}(19 \mathrm{~km})$ circular eye as exhibiting a "fishbowl effect" with the convection in the eyewall spiralling vertically to the point of reseabling corkscrews. During this flight, at a 700 mb height of 2022 m , the 700 mb temperature within the eye was an exceptionally high $30^{\circ} \mathrm{C}$. Vanessa remained a super typhoon from 2518002 to 280000 z .

The recurvature which eventually took place on the 27 th and 28 th was initially
forecast on the 250000 z warning. A frontal system over eastern China was identified as the mechanism for recurvature. Vanessa was forecast to recurve at 21 N to 22 N , but actually turned to the northeast at 20 N as the frontal system moved slightly faster than predicted. At no point during this period was Typhoon Warren in the South China Sea considered to be a factor in Vanessa's movement since Vanessa was the dominant storm both in size and strength.

The final phase of Vanessa's life was a complex transition to an extratropical low. Interaction with the front began shortly after recurvature. The 2823302 aircraft reconnaissance mission indicated the transition was underway with stratocumulus undercast present throughout much of the storm. Vanessa continued to weaken until the transition was complete.

Post-analysis indicates that extratropical transition was completed by 301200 z as satellite imagery showed no convection was present. Vanessa transitioned to a storm force low along the front and rapidly moved off to the northeast. The final warning was issued at 310000 z .

Typhoon Warren was the most erratic moving tropical cyclone of 1984. The system was the subject of two TCFAs. It made both a cyclonic and anticyclonic loop and varied in speed from quasi-stationary for 12 hours to $8 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$. Warren's erratic movements were due to interactions with eastward moving mid-latitude troughs and Super Typhoon Vanessa and due to its location in the monsoon trough.

The precursor of Warren appeared late on 17 October as an area of poorly organized convection at the trailing end of a shear Iine approximately $300 \mathrm{~nm}(556 \mathrm{~km})$ northeast of Mindanao. Synoptic data at the time indicated that a broad 15 to 25 kt (8 to 13 m / s) circulation was collocated with the convection and embedded in the monsoon trough. Over the next 24 hours the convection persisted and appeared to be separating from the shear zone while increasing slightly in organization and intensity. This prompted the first TCFA to be issued at 1815002. Aircraft reconnaissance investigated the alert area at 1901592 and found a broad weak surface circulation with an MSLP of 1006 mb . Satellite imagery now showed the convection to be decreasing which was confirmed by the ARWO who reported that no significant convection was directly associated with the disturbance. The TCFA was cancelled at 1911302 based on the lack of persistent significant convection near the low-level center, strong upper-level easterly winds over the region, and the proximity of the disturbance to land.

Over the next several days the surface circulation weakened and moved west-southwest along the trough axis across the Philippines and entered the South China Sea on 22

October. During this period synoptic data indicated that several weak circulations were embedded in the monsoon trough. Late on 22 October the tropospheric pattern became more favorable for development. Synoptic data showed that west of Palawan a strong northeast monsoon outbreak combined with a moderate southwest monsoon to the south had produced a well-defined surface circulation. Meanwhile, upper-level diffluence developed over the South China Sea on the western edge of an anticyclone located east of Luzon (Figure 3-26-1).

On 23 October the disturbance rapidly developed. Satellite imagery at 230300 z showed that an exposed low-level circulation center was present some 30 to 60 nm (56 to 111 km) southeast of the developing intense convection. Satellite data also indicated that the tightly wrapped surface circulation was moving north towards the convection. The 30 to 40 kt (15 to $21 \mathrm{~m} / \mathrm{s}$) eastsoutheast upper-level wind over the disturbance, while providing some diffluence, which contributed towards development, also hindered the surface circulation from aligning with the convection. At 230600 z the disturbance was again mentioned on the ABEH, followed several hours later by the second TCFA at 2311002. With continued development evident, the first warning was issued at 1800z. Infrared satellite imagery at the time of the first warning indicated the surface center was now located on the eastern edge of the Central Dense Overcast (CDO). Although Dvorak satellite intensity analysis on the 2318002 infrared imagery indicated that $35 \mathrm{kt}(18 \mathrm{~m} / \mathrm{s})$ winds were present, JTWC did not upgrade Warren from

Figure 3-26-1. 200 mb analysis at 2300002 October.
The diffluence over the South China Sea was sufficient to allow warren to develop, although it would later hinder the low-level circulation from becoming collocated with the convection.
depression status until 12 hours later when visual imagery confirmed that the upgrade was warranted. Post analysis indicates this upgrade should have occurred at 2318002. Warren and the monsoon trough moved north over the next 18 hours. Visual satellite imagery showed that a partially exposed low-level circulation center was now evident on the northeast edge of the convection.

Between 2406002 and 2700002 Warren moved erratically. It did a small cyclonic loop on the 24 th and 25 th, before resuming a slow westward course followed by a turn to the north and a 12-hour quasi-stationary period between 261200 z and 2700002. This erratic movement was partially due to Warren's remaining embedded in the monsoon trough and the passage of a mid-latitude trough to the north.

During this period, despite the strong upper-level easterly winds which kept nearly all the convection west of the lowlevel center, Warren strengthened to typhoon intensity. Aircraft reconnaissance at 260330 z found a band of 60 to 70 kt (31 to $36 \mathrm{~m} / \mathrm{s}$) surface winds in the south semicircle of Warren. These winds were the result of the southwest monsoon enhancing Warren's circulation. Warren maintained this minimum $65 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$ typhoon intensity through 2818002 .

Warren became quasi-stationary at 2612002. At this time Super Typhoon Vanessa (located some 960 nm (1778 km) to the east of Warren in the central Philippine Sea) was moving towards the northwest. Warren now came under the influence of Vanessa's large inflow and a mid-latitude trough passing to the north. (This trough would also be responsible for Vanessa's recurvature). Warren responded by turning to the east-northeast and accelerating to $7 \mathrm{kt} \mathrm{(13km/hr)} \mathrm{(Figure} \mathrm{3-26-2)}$. placed the Philippine Islands north of 14 N including Clark AB and the Subic Bay Naval Facilities in imminent danger of being hit by Warren. As a result, all Navy and Air Force Bases in the region were placed in Condition of Readiness I early on the 28 th. Fortunately, Warren's interaction with Vanessa and the mid-latitude trough was short-lived sparing the Philippines a direct hit. On 28 October, with Vanessa recurving and the trough axis to the east, Warren slowed and commenced an anticycionic turn back to the west. At its closest point of approach, Warren was $120 \mathrm{~nm}(222 \mathrm{~km})$ westnorthwest of Clark AB (WMO 98327). As the effects of the trough and Vanessa eased, Warren completed its turn to the west on 29 October. The highest wind reported at Clark AB was $22 \mathrm{kt}(11 \mathrm{~m} / \mathrm{s}$) at 282055 Z , with the total rainfall on 28 and 29 October reaching 8.74 inches (222 mm). No significant damage was reported at any of the military bases.

Figure 3-26-2. Typhoon warren as it moved to the east-northeast under the influence of Super Typhoon Vanessa. Note the effects of the strong upper-level outplow from vanessa displacing Warren's convection to the west (2723262 October NOAA visual imagery).

Other coastal areas and marine interests were not nearly as fortunate. Heavy rains caused landslides in several coastal towns killing at least 42 people High seas capsized and sank the interisland passenger ferry, MV VENUS (746 tons) on 28 October off Torrijos and Bondoc Peninsula. About 36 people were killed but at least 213 passengers were saved. In addition, a 930 ton ship, the Lorenzo Container VIII was sunk on 28 October near 14.0N 120.6E, with eight crew members listed as missing.

Ridging developed in the low to midlevels in wake of the mid-latitude trough passage. The subtropical ridge now became anchored across the northern part of the South China Sea. Another surge of the northeast monsoon entered the South China Sea on 29 October and began to expand Warren's wind radii in the northern semicircle. Aircraft data indicated that Warren was beginning to weaken as it drew cooler, dryer air into its center. The ARWO reported that the center was surrounded by stratocumulus clouds. This was also evident on satellite imagery as the convection began to decrease in intensity. The deep-layered northeast monsoon flow pushed Warren's lowlevel circulation to the west-southwest on

30 October and created a siqnificant tilt from the surface to the 700 mb center. On the 31 st, the hard convection was associated with the 700 mb center, displaced approximately 60 nm (lll km) west-northwest of the weakening surface center (Figure 3-26-3). JTWC issued the final warning at 310600 Z since the $30 \mathrm{kt} \mathrm{(} 15 \mathrm{~m} / \mathrm{s}$) surface center was no longer expected to become aligned with the mid-level center and the convection. This prognosis held true, but because Warren's low-level circulation was still in a region of positive, low-level vorticity, dissipation occurred much slower than was forecast. Satellite imagery still showed that a well-defined low-level circulation was present 24 hours after the last warning was issued. Warren's displaced convection crossed the central Vietnam coast on 1 November with moderate to heavy rain forecast. The combination of the northeast monsoon and dissipating surface circulation just offshore resulted in 30 to 35 kt (15 to $18 \mathrm{~m} / \mathrm{s}$) winds along the Vietnam coast. By 1800 z on 1 November the surface circulation was no longer discernable on satellite imagery and synoptic data on 2 November was inconclusive as to the location of the weakening surface center. Warren had finally dissipated.

Figure 3-26-3. The partially exposed low-level circulation center displaced 60 to 70 nm (111 to 167 km) southeast of the 700 mb center. The northeast monsoon is pushing the low-level center to the southwest. This imagery was taken just fout hours. prior to the last warning 13102042 October DMSP visual imagery).

Typhoon Agnes was the first of three tropical cyclones to develop during the month of November. It was also the last storm of the season to directly hit the Philippines. From the time of the first warning until it made landfall over central Vietnam, Agnes moved rapidly on a nearly straight west-northwest course.

The system that eventually developed into Typhoon Agnes began as an isolated area of weak convection near the equator on 28 October. Synoptic data at the time hinted that a weak $5 \mathrm{kt}(3 \mathrm{~m} / \mathrm{s})$ surface circulation might be present beneath the convection near 1 N 149E. The southwest monsoon at this time was restricted to the South China and northern Philippine Seas and did not assist in the development of this system. Even in its incipient stage, however, a small upperlevel anticyclone was analyzed over the disturbance providing good ventilation.

The system slowly developed during the next three days as the area of convection and associated weak circulation moved northwest to near 4 N . Late on the 31st, satellite imagery revealed that a significant increase in convection and organization was taking place. This prompted the issuance of a TCFA at 00002 on 1 November.

During the next six hours the disturbance rapidly pulled itself together into a potent, compact circulation. The first aircraft reconnaissance mission into the alert area at 0105132 found a closed circulation with maximum surface winds of $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$. Analysis of satellite imagery conducted just prior to the flight had indicated that only 35 kt ($18 \mathrm{~m} / \mathrm{s}$) winds were to be expected. The first warning on Agnes as a tropical storm was issued a short time later at 0106002.

From the time the disturbance was initially detected until the TCFA was issued, Agnes had moved slowly to the northwest. By early on the lst, Agnes had moved far enough north to be influenced by the easterly flow along the south side of the broad mid- to low-level subtropical ridge which now extended from the dateline west to the coast of Vietnam. This ridge and its associated easterly steering flow persisted throughout the life of Typhoon Agnes and kept the storm on a west-northwest track from the lst of November until it
dissipated over Vietnam six days later. This ridge was also responsible for making Agnes' wind field asymmetric. Due to the enhancement of the storm's circulation by the easterly trades, Agnes' wind field was consistently stronger and extended to a larger radii in the northern semicircle. This asymmetry would be present throughout much of the life of Agnes.

As Agnes transited the Philippine Sea it steadily intensified reaching a peak intensity of $120 \mathrm{kt}(62 \mathrm{~m} / \mathrm{s})$ at 041800 z . This peak intensity occurred just prior to Agnes making landfall 10 nm (19 km) south of Borongan (WMO 98553) on the central Philippine Island of Samar. Figure 3-27-1 is satellite imagery of Agnes approximately twelve hours prior to reaching maximum intensity.

Agnes weakened as it crossed the central Philippines, but due to its rapid speed of movement was able to maintain typhoon intensity. After emerging in the South China Sea, Agnes once again intensified, this time to $100 \mathrm{kt}(51 \mathrm{~m} / \mathrm{s})$. Agnes maintained this intensity until it made landfall $20 \mathrm{~nm}(37 \mathrm{~km})$ north of QuiNhon, Vietnam (WMO 48870) at approximately 1100 z on 7 November (Figure 3-27-2). After landfall Agnes continued to track to the west-northwest and rapidly weakened. The final warning by JTWC was issued at 080000 z .

Typhoon Agnes caused substantial damage and loss of life when it crossed the Philippine Islands. Storm surge flooding of low-lying coastal areas on the islands of Samar and Leyte was particularly severe. In addition, heavy rainfall caused extensive flooding. The winds, floods and mudslides combined to leave over 350,000 homeless. At least 564 people are known dead as a result of the storm. When the number dead are combined with the number of people reported missing, the final death count is expected to be near 1000. News reports indicated that the damage exceeded 600 million pesos (30 million U.S. dollars).

When Typhoon Agnes made landfall on Vietnam three days later, there was additional destruction of property and loss of life. Heavy rains brought flooding which severely affected the rice harvest and winter crop cultivation.

Figure 3-27-1. Agnes just prior to attaining peak intensity. At this time Agnes had a $5 \mathrm{~nm}(9 \mathrm{~km})$ eye (0406572 November NOAA visual imagery).

Figure 3-27-2. Typhoon Agnes at $100 \mathrm{ht}(51 \mathrm{~m} / \mathrm{s})$
intensity just prion to making landfall over central Vietnam 10708012 November NOAA visual imagery).

The second and last super typhoon of the 1984 season led a rather unusual life. After forming east of Guam, it made a small cyclonic loop before heading to the westsouthwest. Two days later, Bill passed just to the south of Guam by which time it had accelerated to almost 20 kt ($37 \mathrm{~km} / \mathrm{hr}$). After causing some damage on the island of Guam, Bill entered the Philippine Sea and turned to the west-northwest. Although it was expected to recurve to the northeast and follow a track similar to that of Super Typhoon Vanessa, due to a complex steering environment including interaction with Typhoon Clara, Bill instead turned to the southeast before eventually dissipating east of the Philippines. Although this track is unusual, it is not uncommon for late season storms to move erratically for at least a portion of their life.

Super Typhoon Bill originated as an area of convection on 7 November near $14 N$ 154E. The convection was at the trailing end of an eastward moving cold front and this may have supplied some low-level vorticity which contributed to the rapid development of the disturbance. The rapid development of the convection resulted in a TCFA at 0802002 . At the time of the TCFA, analysis of satellite imagery already indicated that $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$ surface winds were present.

The first of a total of 35 aircraft reconnaissance flights flown against Bill found the disturbance's circulation center at 0807212 but observed surface winds of only $20 \mathrm{kt}(10 \mathrm{~m} / \mathrm{s})$. The system showed continued development during the next 12 hours, and as a result the first warning was issued at 081800 z .

From the 8th until the l0th, Bill slowly tracked in a $25 \mathrm{~nm}(46 \mathrm{~km})$ wide cyclonic loop and continued to strengthen. At 00002 on 10 November, reconnaissance aircraft reported that Bill had intensified to a $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ tropical storm with an MSLP of 990 mb .

Bill attained typhoon strength on the loth. The weak steering flow which had been present was replaced by easterly flow as the subtropical ridge strengthened to the north of the storm. At approximately 1006002 Bill completed its cyclonic loop and started to move to the west and then southwest on a course that would eventually bring the typhoon to the southern tip of Guam. On the llth and l2th, Bill accelerated and gradually intensified (Figure 3-28-1). With Bill forecast to pass within $60 \mathrm{~nm}(111 \mathrm{~km})$ of Guam, tropical cyclone Condition of Readiness III was set on the afternoon of 11 November. On the morning of the l2th, with Bill now

Figure 3-28-1. Bill consolidating east of Guam (1100032 November DMSP visual imagery).
forecast to pass less than $30 \mathrm{~nm}(56 \mathrm{~km})$ south of the island, Condition of Readiness II was set at 1123302.

Although Guam was forecast to be in the "dangerous" semicircle of the typhoon, the strength of the flow around the ridge did have a positive effect on Guam. Bill accelerated from 15 to $20 \mathrm{kt} \mathrm{(} 28$ to $37 \mathrm{~km} / \mathrm{hr}$) as it passed Guam thereby considerably shortening the time the typhoon affected the island. This rapid forward speed may also
have been a factor in the slow intensification of the system. Only a 15 kt ($8 \mathrm{~m} / \mathrm{s}$) increase in intensity occurred during the 24 hour period between 111800 Z and 121800 z as Bill approached Guam.

Condition of Readiness I was set on the evening of the l2th, as Bill neared Guam. Typhoon Bill passed the southern tip of the island at 1216302 at a distance of 12 nm (22 km). Figure 3-28-2 contains a plot of the data obtained by reconnaissance air-

Figure 3-28-2. Plot of data obtained at the 100 mb level by aircraft neconnaissance on the two missions flown as Bill passed south of Guam.
craft during the two missions flown when Bill was at its closest point of approach to Guam. On the island itself, a maximum wind of $63 \mathrm{kt}(32 \mathrm{~m} / \mathrm{s})$ was recorded at the National Weather Service Station (WMO 91217) at 121658 z , with a gust of $84 \mathrm{kt}(43 \mathrm{~m} / \mathrm{s})$ recorded at Reserve Craft Beach in Apra Harbor. Typhoon Bill caused some damage on Guam, particularly to agricultural commodities. Banana trees that had been slightly damaged during the passage of Super Typhoon Vanessa were completely destroyed by Bill. Total crop damage was estimated at
\$7,707,911. Some minor flooding also occurred but no personnel injuries were reported. Electrical power was out in certain sections of the island for several days.

Bill entered the Philippine Sea late on the 12 th moving west at $20 \mathrm{kt}(37 \mathrm{~km} / \mathrm{hr})$ and intensifying. In the 24 hour period between 1312002 and 1412002 , the MSLP dropped 54 mb to 912 mb and the wind speed increased from $95 \mathrm{kt}(49 \mathrm{~m} / \mathrm{s})$ to $125 \mathrm{kt}(64 \mathrm{~m} / \mathrm{s})$ (Figure 3-28-3). The pressure continued to drop for another 12 hours, with aircraft reconnaissance at 1422342 reporting an MSLP of 909 mb. This was the lowest pressure reported in Bill. Bill attained super typhoon strength at approximately $141800 Z$ which it then maintained for 12 hours.

Bill turned to the west-northwest early on the 14 th and by 141800 z had turned to the northwest. It now appeared that Bill was starting to move around the western end

Figure 3-28-3. Typhoon Bill as it appeared on satellite imagery while undergoing rapid intensification (140044Z November DMSP visual imagery)
of the subtropical ridge. What was initially expected to be a simple recurvature scenario would soon become a complex interaction between Bill, the approaching Typhoon Clara (now developing near Truk (WMO 91334)), the mid-latitude westerlies, and the northeast monsoon. These factors would eventually cause Bill to weaken, double back on its present track and eventually dissipate.

Bill slowed down as it moved to the northwest and by 151800 z was moving at 7 kt ($13 \mathrm{~km} / \mathrm{hr}$) down from the $15 \mathrm{kt} \mathrm{(} 28 \mathrm{~km} / \mathrm{hr}$) movement of twenty-four hours earlier. This was due to the passage of a midlatitude trough to the north which weakened the subtropical ridge. Bill now began to weaken as it encountered strong upperlevel westerlies which disrupted its outflow and sheared the convection to the northeast (Figure 3-28-4). This marked the start of a weakening trend which would continue until dissipation.

At 12002 on the 15 th, the subtropical ridge reintensified temporarily forcing Bill back on a west-northwest course which
it maintained until late on the l6th. On the lith, Bill started to track to the northwest as the ridge weakened once again. It now appeared that recurvature was finally going to occur. At 180000 Z Bill turned again, this time to the northeast but unfortunately this was not to be the start of the long awaited recurvature.

At this time, three factors were involved in the steering of Bill: Typhoon Clara had become the dominant circulation in the Philippine Sea (Figure 3-28-5), the flow around the subtropical ridge was waning, and the northeast monsoon was gaining strength. The subtropical ridge was the first loser in this tug-of-war as Clara's large low-level circulation started to draw a weakening Bill to the southeast. Figure 3-28-6 shows the rapidly weakening Bill with little convection remaining as it moved towards Clara.

Bill continued to track to the southeast and weaken under the combined influence of Typhoon Clara and the westerlies. Aircraft reconnaissance at 1911302 confirmed this weakening trend. The MSLP had risen to 997 mb and the maximum obscrved 700 mb flight

Figure 3-28-4. Bill east of Luzon as it encountered
the upper-level westerlies and began to weaken.
Note the cloud covered eye and the cirrus streaming
to the northeast (1601452 November DiMSP visual
imagery).

Figure 3-28-5. The 1812002925 mb NUA analysis showing the dominance of Tuphoon Clara in the
Philippine Sea. Bill which supported $65 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$
winds at this time was a small circulation compared
to Clara and the northeast monsaon.
level wind was $28 \mathrm{kt} \mathrm{(14m/s} \mathrm{)}. \mathrm{(Since} \mathrm{the}$ mission was flown at night, no surface wind data were available.) Based on the aircraft reconnaissance data and the lack of convection and organization on satellite imagery, Bill was downgraded to a tropical depression and finaled at 191200z. As it turned out, this was premature. Early on the 20 th , with Clara completing recurvature along 132 E and accelerating to the northeast, its influence on Bill weakened and Bill began to regenerate some convection. Visible imagery indicated that a low-level circulation center was present. Aircraft reconnaissance a short time later, flying in the daylight at the 1500 ft (457 m) level at 2002052 reported that Bill was still moving to the southeast
and now had an MSLP of 999 mb . The aircraft also reported, that a well-defined low-level circulation with 40 to $55 \mathrm{kt}(20$ to $28 \mathrm{~m} / \mathrm{s})$ winds was present! The strongest winds were located in the western semicircle of the storm and were being enhanced by the northeast monsoon. As a result Bill was returned to warning status as a tropical storm at 2006002 (Figure 3-28-7).

Although the aircraft wind data suggests that Bill intensified between 1912002 and 200600Z, this is not considered likely. Due to the weak mid-level winds reported on the 191130 fix mission, JTWC had the impression that Bill was rapidly dissipating. In fact Bill still possessed a well-defined surface

Figure 3-28-6. A weakened Bill as it heads southeast under the influence of clara's inflow (1822582 November NOAA visual imageryl.
circulation which was weakening at a much slower rate that the mid-level circulation. If the 1911302 fix mission had been able to observe surface winds it would probably have reported that $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ surface winds were still associated with Bill.

As it turned out, the increase in convection was temporary. As Clara moved further away, its effect lessened and Bill slowed, doing a small cyclonic loop on the 2lst. Bill was now under the influence of
the northeast monsoon which pushed the lowlevel circulation to the southwest. By the 22nd the low-level circulation became embedded in the northeast monsoon, and Bill was no longer identifiable as a significant tropical cyclone. The final warning was issued at 220000z. Although the low-level circulation dissipated in the Philippine Sea, residual convection brought locally heavy rains to the central Philippines early on the $23 r d$ of November.

Figure 3-28-7. Typhoon clara accelerating to the northeast and beginning extratropical transition. Bill now has more convection than 24 hours earlier but this convective flare-up was temporary (2007002 November NOAA visual imagery).

Typhoon Clara was the last significant tropical cyclone to develop during the month of November. It developed into a textbook, late-season recurver and was noteworthy due to its effect on Super Typhoon Bill.

Clara began as a large, low-latitude disturbance in the eastern Caroline Islands. It was located by surface synoptic data before it was identified in satellite imagery. This disturbance first appeared late on 11 November as a weak circulation near 4 N l64E and received first mention as a suspect area in the 120600 z Significant Tropical Weather Advisory (ABEH PGTW). By 130000 z , a very broad area of convection was associated with the circulation. The circulation's development was aided by the presence of a disturbance in the Southern Hemisphere near the Solomons which strengthened the westerly flow south of the circulation. These westerlies combined with the northeast trades to the north to supply the excess low-level vorticity needed for continued development. The upper-level
pattern was also favorable with anticyclones over Super Typhoon Bill and over the Solomons providing divergence aloft over the developing system. This cross-equatorial interaction at both the surface and 200 mb level was instrumental in the development of Typhoon Clara.

The area continued to consolidate throughout the day and at 131600 z the ABEH was reissued upgrading the system's potential for development to "fair". Analysis of satellite imagery at this time yielded an intensity estimate of $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$ with a forecast to intensify. An aircraft investigation was requested for later in the day and with continued development evident, a TCFA was issued at 132030z. AT 140454 Z aircraft reconnaissance found a surface center with 15 to 25 kt (8 to $13 \mathrm{~m} / \mathrm{s}$) winds; consequently warning number one was issued at 1406002. Figure 3-29-1 shows Clara fifteen hours later as a $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ tropical depression.

Figure 3-29-1. Clara at Tropical Depression
intensity during its consolidation stage. Maximum surface uinds at this time were near 30 kt $(15 \mathrm{~m} / \mathrm{s})$. This system was upgraded to Thopical Storm Clara less than nine hours later 11421132 November NOAA visual imageryl.

From this point on, Clara was a wellbehaved and well forecast system. As Clara intensified it developed into a large circulation. As early as 151200z, Clara controlled as much inflow as Bill, and by late on the l6th was clearly the dominant of the two storms. Progress along its track was typical of a well-behaved fast moving typhoon, and anticipated well in advance by JTWC. TYphoon Clara recurved just east of 132E. As Clara recurved, it passed within 500 nm (926 km) of the weakening Super Typhoon Bill. This proximity to Bill disrupted Clara's outflow and resulted in a slight weakening late on the 18 th and into the 19 th . However, Bill's effect on Clara was considerably less than the major course and intensity changes that Clara inflicted on Bill. Late on the 19th, as Clara recurved. to the northeast and opened on Bill, it
reintensified to $105 \mathrm{kt}(54 \mathrm{~m} / \mathrm{s})$. This was just $5 \mathrm{kt}(3 \mathrm{~m} / \mathrm{s})$ less than the peak intensity of $110 \mathrm{kt} \mathrm{(} 57 \mathrm{~m} / \mathrm{s}$) recorded prior to recurvature.

Figure 3-29-2 shows Clara after it had completed recurvature and was about to begin extratropical transition with a frontal system to the northeast. This transition was of the complex variety in which the typhoon merges with an existing front and becomes a wave on the front. This wave then propogates along the front and usually accelerates to the northeast. In this process the typhoon loses all of its convection and tropical characteristics but still retains a strong low-level wind field. In Clara's case, the transition was rapid and complete by 211200z. The extratropical low was still discernable on satellite imagery as a frontal wave 30 hours later.

Figure 3-29-2. Typhoon clara just after completing recurvature and about to begin extratropical transition with the frontal system to the northeast. Even this close to the weakening Super Typhoon Bill, clara showed little indication of interaction 11922342 November NOAA visual imagery).

As Clara accelerated to the eastnortheast, it passed to the north of Iwo-Jima (WMO 47981) which put the island in the dangerous semicircle of the typhoon. Sustained winds of $40 \mathrm{kt} \mathrm{(} 21 \mathrm{~m} / \mathrm{s}$) with gusts to $63 \mathrm{kt}(32 \mathrm{~m} / \mathrm{s})$ were reported during Clara's passage. However, no known damage was sustained on the island.

In summary, Clara was one of the classic typhoons of 1984. Forming at lowlatitudes as a very broad disturbance,

Clara slowly consolidated and deepened into a $110 \mathrm{kt}(55 \mathrm{~m} / \mathrm{s})$ system. Moving rapidly across the western Pacific, Clara recurved and, in textbook fashion, transitioned into an extratropical low while accelerating to the east-northeast. During Clara's entire lifetime, Super Typhoon Bill was active in the same portion of the ocean. Even though they were at times close to each other, Bill had no noticable effect on Clara's track and only minor influence on Clara's intensity.

Typhoon Doyle was the final tropical cyclone of the 1984 season and the only one to develop during the month of December. Doyle followed a typical recurvature track and remained over open water throughout its lifetime.

The tropical disturbance that was to become Doyle first appeared as an area of convective activity near 5 N 156E at 00002 on the lst of December. It was mentioned as a new suspect area on the 0106002 Significant Tropical Weather Advisory (ABEH PGTW) and was given a "poor" potential for significant tropical cyclone development.

During the next 36 hours the disturbance moved west-northwest and gradually increased in intensity and organization. During this time satellite imagery showed the disturbance was developing good upperlevel support in the form of anticyclonic outflow. With the potential for significant tropical cyclone development now considered to be "fair", the ABEH was reissued at 0218002 .

Aircraft reconnaissance early on the 3rd was unable to locate a surface circulation, but did find a trough with an MSLP of 1004 mb . The system continued to show signs of increased organization prompting the issuance of a TCFA at 0311002. On the afternoon of the 4 th, aircraft reconnaissance indicated that the MSLP had dropped to 1001 mb and that $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$ surface winds were now associated with the disturbance. Again no low-level circulation center could be found. Since continued slow development was evident on satellite imagery, the TCFA was reissued at 041100 z . At this time imagery showed several spiralling convective bands were present indicating that the formation of a significant tropical cyclone was imminent. Also present at this time was a Southern Hemisphere low-level circulation in the Coral Sea east of Cape York. This vortex contributed to the development of Doyle by increasing the westerly low-level flow to its south.

Satellite imagery at 041600 z indicated that the system now had some intense

Figure 3-30-1. Typhoon Doyle one day before attaining maximum intensity 10801062 December DMSP visual imagery).
convection near the center of the developing circulation and that two intensifying convective bands were present. With Dvorak intensity analysis of this imagery indicating that 35 kt ($18 \mathrm{~m} / \mathrm{s}$) surface winds were present, the initial warning on Doyle was issued at 041800 z .

An investigative flight into Doyle several hours later was finally able to locate the storm's center at 0501292 observing $40 \mathrm{kt} \mathrm{(} 21 \mathrm{~m} / \mathrm{s}$) surface winds and measuring a central pressure of 994 mb . The surface center was very small measuring a mere $5 \mathrm{~nm}(9 \mathrm{~km})$ in diameter, with the maximum winds located 5 nm (9 km) from the center and decreasing rapidly outward. The small size of the surface center may have been a factor in the inability of previous reconnaissance flights to locate it.

During the next 48 hours, Doyle slowly intensified. Aircraft reconnaissance confirmed this slow development until the mission late on 6 December, when the central pressure was measured at 973 mb , a drop of 18 mb in just 12 hours. Maximum sustained surface winds of $90 \mathrm{kt}(46 \mathrm{~m} / \mathrm{s})$ were observed on the north side of the storm where the easterly trades were enhancing Doyle's circulation. Doyle was upgraded to typhoon strength at 0700002 based on this information. Accompanying this intensification was a change in movement to a more northwesterly track.

The plotted values of equivalent potential temperatures versus the MSLP for the 30 hours prior to 0700002 December indicated the strong possibility of rapid deepening during the next 36 hours (Dunnavan, 1981). This indication was incorporated in the 070000 Z December warning with some modification. The warnings prior to 070000 z had indicated no significant increase in intensity was likely due to the presence of the northwest monsoon flow to the north of the storm. Since that situation was still present, intensification to more than $120 \mathrm{kt}(62 \mathrm{~m} / \mathrm{s})$ was not forecast. At this time the area north of Doyle was marked by the presence of stratocumulus clouds indicating the stability of the atmosphere in that region.

At 0720472 the MSLP had decreased to 935 mb , a fall of 43 mb in 24 hours (Figure 3-30-1). Maximum sustained winds reported by the ARWO at this time were $110 \mathrm{kt}(57 \mathrm{~m} / \mathrm{s})$. After 072047 Z , Doyle's central sea-level pressure began to rise reaching 993 mb at 092037 Z December (a rise of 58 mb in 48 hours). An unusual feature of Typhoon Doyle was the way the maximum surface winds lagged the occurrence of its MSLP. According to the best track intensities, which are based on all available data, Typhoon Doyle reached a maximum intensity of $125 \mathrm{kt}(64 \mathrm{~m} / \mathrm{s})$ at 090000 Z some 27 hours after the lowest minimum sea-level pressure was recorded!

Figure 3-30-2. The exposed low-level circulation of Doyle at the time of the final warning 11106012 December NOAA visual imageryl.

Between 0912002 and $100000 z$, Doyle turned to the north and rapidly weakened from $95 \mathrm{kt}(49 \mathrm{~m} / \mathrm{s})$ to $45 \mathrm{kt}(23 \mathrm{~m} / \mathrm{s})$.
Satellite imagery during this time showed a dramatic decrease in the intensity and extent of Doyle's convection. After 100000 Z Doyle weakened more gradually while accelerating to the northeast. The final
warning was issued at 1106002 as the nearly convection-free low-level circulation center dissipated as a significant tropical cyclone (Figure 3-30-2).

There were no reports of damages from Typhoon Doyle as it remained over open water throughout its lifetime.

2. NORTH INDIAN OCEAN TROPICAL CYCLONES

Tropical cyclone activity in the North Indian Ocean was nearly normal during 1984. Four storms originated in this area as compared to the annual average of 4.4 .

Tables 3-6 through 3-8 provide a summary of North Indian Ocean tropical cyclone activity for 1984 as compared to earlier years.

TABLE 3-6.
1984 SIGNIFICANT TROPICAL CYCLONES

TROPICAL	CYLONE	PERIOD O		OF W	ARNING	CALENDAR DAYS OF WARNING	NUMBER OF WARNINGS ISSUED	MAXIMUM SURFACE WIND	(KT)	$\begin{aligned} & \text { ESTIMA } \\ & \text { MSLP } \end{aligned}$	$\begin{aligned} & \text { ED } \\ & (\mathrm{MB}) \end{aligned}$	BEST TRA DISTANCE TRAVELED	(NM)
1. TC	01A	26	MAY -	- 28	MAY	3	9	45		990		819	
2. TC	02B	12	OCT -	- 14	OCT	3	8	45		980		380	
3. TC	03B	11 N	NOV -	- 15	NOV	5	16	85		975		719	
4. TC	04B	28	NOV -	- 08	DEC	11	34	75		973		2662	
			1984	4 TOT	ALS :	22	67						

FWC/JTWC GUAM 3142/62 (NEN 2-76)

FREQUENCY OF TROPICAL CYCLONES BY MONTH AND YEAR

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAI
1971*	-	-	-	-									
1972*	0	0	0	1	$\overline{0}$	0	0	0	0	1	1	0	2
1973*	0	0	0	1	0	0	0	0	2	0	1	0	4
1974*	0	0	0	0	0	0	0	0	0	1	2	1	4
1975												0	1
1976	1	0	0	0	2	0	0	0	0	1	2	0	6
1977	0	0	0	1	0	1	0	0	1	1	0	1	5
1978	0	0	0	0	1	1	0	0	0	1	2	0	5
1979	0	0	0	0	1	1	0	0	0	1	2	0	4
1980	0	0	0	0	0	1	0	0	2	1	2	0	7
1981	0	0	0	0	0	0	0	0	0	0	1	1	2
1982	0	0	0	0	1	1	0	0	0	1	1	1	3
1983	0	0	0	0	0	0	0	1	0	2	1	0	5
1984	0	0	0	0	1	0	0	1	0 0	1	1	0 0	3
1975-1984	. 1	-	-	. 1	. 7	. 4	-	. 1	. 3	10	1		
AVERAGE									. 3	1.0	1.4	. 3	4.4
CASES	1	0	0	1	7	4	0	1	3	10	14	3	44

* JTWC warning responsibilty began on 4 June 1971 for the Bay of Bengal, east of 90 E . As directed by USCINCPAC, JTWC issued warnings only for those tropical cyclones that developed or tracked through that portion of the Bay of Bengal. Commencing with ward to include the western portion of the ward to include the western portion of the Bay of Bengal and the entire Arabian Sea.

Tropical Cyclone 01A, the only tropical cyclone to develop in the North Indian Ocean during the Spring transition season, distinguished itself by its nonclimatological track. After developing in the western Arabian Sea, Tropical Cyclone 0lA turned to the west-southwest and transited through the Gulf of Aden rather than moving to the north or northwest along the climatologically favored track and making landfall along the east coast of the Arabian peninsula. This is the only tropical cyclone of record to transit through the Gulf of Aden.

The disturbance which eventually developed into Tropical Cyclone 01A was first detected on 23 May as an area of strong convection centered approximately 180 nm (333 km) southeast of Socotra (WMO 61599). The convection persisted and the disturbance was mentioned as a suspect area in the Significant Tropical Weather Advisory (ABEH PGTW) at 06002 on the 24 th. The disturbance moved slowly northwestward during the next 36 hours with a gradual increase in organization. At 260051z, a TCFA was issued prompted by the persistent slow improvement in the convective organization and by indications from satellite imagery that a small but well organized low-level circulation was developing. Throughout this period, synoptic data was unable to confirm the
presence of a surface circulation. At 261055z, the first warning on Tropical Cyclone 01A, valid at 260600 Z was issued. This was based on a Dvorak intensity analysis of Figure 3-31-1 which estimated that surface winds of 35 kt ($18 \mathrm{~m} / \mathrm{s}$) were present.

Tropical Cyclone 01A remained a compact system throughout its life. Even at its maximum intensity of $45 \mathrm{kt}(23 \mathrm{~m} / \mathrm{s})$ between 0000 z and 06002 on 27 May , the radius of greater than $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ winds was estimated to be only 60 nm (111 km). The small size of Tropical Cyclone 01A coupled with the sparsity of synoptic data in the area precluded any verification of surface intensity estimates. Intensity estimates on this system were based entirely on Dvorak satellite analysis.

Tropical Cyclone 01A moved northwestward until late on the 26 th , when it turned to the west-southwest and entered the Gulf of Aden in response to a strong subtropical ridge over Saudi Arabia. Tropical Cyclone 01A transited up the Gulf of Aden until it made landfall at $0300 z$ on 28 May, approximately $35 \mathrm{~nm}(65 \mathrm{~km})$ west of Berbera, Somalia (WMO 63160). After making landfall, Tropical Cyclone 01A moved inland over Somalia and dissipated. There were no reports of damages or injuries from this system.

Figure 3-31-1 Tropical Cyclone 01A at the entrance to the Gulf of Aden 12606172 May DMSP visual imagery).

Tropical Cyclone 02B, the first tropical cyclone to develop in the North Indian Ocean during the Fall transition season, led a rather uneventful life. Tropical Cyclone 02B was first detected early on the loth of October as a broad area of convection in the north-central Bay of Bengal. During the day the convection showed improved organization with cirrus plumes indicating an upper-level anticyclone existed over the disturbance. No surface synoptic data was available in the area; however, curvature of the low-level clouds indicated a developing low-level circulation was present. Dvorak intensity analysis of the 101800 z imagery estimated that surface winds of $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ were present in the system. This prompted the issuance of the first of two TCFAs at 102300 z .

During the next two days the disturbance developed a broad circulation covering the head of the Bay of Bengal and intensified slowly. Upper-level support remained favorable for further intensification and the only inhibiting factor for development was the proximity of the disturbance to land which restricted the low-level inflow. Although Tropical Cyclone 02B formed in the monsoon trough, most of the flow from the southwest monsoon was being drawn into Tropical Storm Susan (22W) which was developing in the South China Sea. If Susan
had not been present, Tropical Cyclone 02B may have developed into a more potent system.

The developing cyclone tracked slowly north until 06002 on the 12 th when a turn to the northwest began. At 1218002 the first warning was issued. The initial warning on Tropical Cyclone 02B was prompted by satellite imagery which indicated that the system had intensified significantly over the past 24 hours and was now supporting winds of $45 \mathrm{kt}(23 \mathrm{~m} / \mathrm{s})$. Once again due to lack of synoptic data, the intensity estimate was based solely on Dvorak analysis of satellite imagery. Tropical Cyclone 02B maintained this intensity for the next 12 hours until strong upper-level easterlies began to shear the convection to the west on 13 October (Figure 3-32-1). This started a weakening trend which continued until dissipation.

As it weakened, Tropical Cyclone 02B continued moving to the northwest and increased its forward speed. At about 140300 Z Tropical Cyclone 02B made landfall on the coast of India approximately 10 nm (19 km) south of Balasore (WMO 42895). The system weakened rapidly over land with the final warning being issued at 141200 z . Although some heavy rains accompanied this storm as it made landfalll there have been no reports of damage.

Figure 3-32-1. Tropical Cyclone 02B near maximum intensity $\{1304462$ October DMSP visual imageru).

'62 (NEW 2-76)

Tropical Cyclone 03B, the second cyclone to form in the North Indian Ocean during the Autumn transition season, developed into the most intense of all 1984 North Indian Ocean Storms. The storm was responsible for at least 430 deaths and has been called the worst tropical cyclone to affect the central east coast of India in 15 years.

The disturbance that would eventually develop into Tropical Cyclone 03B, was first noticed late on 5 November as a broad area of poorly organized convection west of Sumatra. Over the next few days the disturbance moved northwest. Although the system showed periodic convective flare-ups, there was no permanent significant increase in organization until 9 November. By then a well-defined low-level circulation center was visible on satellite imagery. During the 9 th and into the loth, the disturbance moved to the west-northwest with only slow development noted. At that time it was thought the disturidance might make landfall over the southeast coast of India before
developing into a significant tropical cyclone. However, that was not to be the case.

Late on the l0th, analysis of satellite imagery indicated that the overall convection and organization of the disturbance was increasing. Since Dvorak intensity analysis already indicated that $30 \mathrm{kt}(15 \mathrm{~m} / \mathrm{s})$ winds were present, a TCFA was issued at 110330 Z .

Less than four hours later, JTWC received a Dvorak intensity analysis from the Air Force Global Weather Central (AFGWC) which indicated the disturbance had intensified rapidly and now supported winds of $55 \mathrm{kt}(28 \mathrm{~m} / \mathrm{s})$: The first warning on Tropical Cyclone 03B was issued at 111200 Z .

Figure 3-33-1 is a streamline analysis of the mid-level flow that was present throughout much of the warning phase of the storm's lifetime. The dominant features are the ridging across the Bay of Bengal and the associated neutral point over the east coast of India.

Figure 3-33-1. The mid-level flow present during much of Tropical Cyclone 03B's lifetime. Streamline analysis performed on the 1112002 November 500 mb NOGAPS wind field.

Since Tropical Cyclone 03B was firmly embedded in the southeasterly flow south of the ridge axis, the initial forecasts called for continued west-northwest movement, with dissipation over India within 36 hours. However, Tropical Cyclone 03B was to take a different course. Responding to the flow around the periphery of the ridge, the storm curved to the north and moved into the neutral point, lost all steering, and began an erratic movement. It took at least one clockwise loop (and perhaps a second) before
finally drifting slowly to the northwest towards India.

As the storm moved north on the l2th, it deepened rapidly attaining a peak intensity of $85 \mathrm{kt}(44 \mathrm{~m} / \mathrm{s})$ at 121800 z During this development stage, the system was vertically aligned with the upper-ievel anticyclone. From early on the l2th until the 14 th, a 6 to 15 nm (ll to 28 km) wide eye was observed on satellite imagery (Figure 3-33-2).

Figure 3-33-2. Tropical Cyclone 03B near maximum intensity (1304272 November DMSP visual imagery).

On 14 November, strong upper-level southwesterlies began to exert pressure on the storm. As a result, the convection began to be displaced to the northeast. Gradual weakening followed under this shearing environment until the storm made landfall where final dissipation occurred.

Unfortunately, the erratic movement and intensification of Tropical Cyclone 03B occurred very close to the east coast of

India and brought a prolonged period of
heavy rain and flooding to much of the
region. At least 430 are known dead as a result of the storm. Over 20,000 people were stranded in coastal villages due to flooding.

At 150600 z the last warning was issued as the nearly convection-free low-level center dissipated over land just south of Nellore (WMO 43245).

Tropical Cyclone 04B was the last tropical cyclone of 1984 to develop in the North Indian Ocean. Like two of the three storms before it, Tropical Cyclone 04B distinguished itself by its unusual track.

Early on 20 November a large area of convection extended from the southern Bay of Bengal across the equator into the South Indian Ocean. There were two weak low-level circulations associated with this convection - one on either side of the equator. Although the convection showed no organization at this time, it was extensive in size; extending from 12 N to 12 S and from 70 E to 100 E . The most intense convection was near the equator where northwest low-level flow from the northern hemisphere converged with southwest flow from the southern hemisphere.

The tropical disturbance that was to become Tropical Cyclone 04B first appeared as an organized area of convection within the broad area near 6N 85.5E. The area was mentioned on the 2006002 Significant Tropical Weather Advisory (ABEH PGTW) and was given a "poor" potential for development into a significant tropical cyclone during the next 24 hours.

The broad disturbance persisted during the next five days and by 06002 on the 25 th, the two surface circulations on either side of the equator had moved further apart and were becoming more organized. Upper-level outflow over the area appeared weak but diffluent.

By 270600 Z , the disturbance in the Bay of Bengal had reached tropical depression strength and had become more organized. This was indicated on satellite imagery by convective banding and the presence of anticyclonic upper-level outflow. This system was now judged to have "fair" potential for significant tropical cyclone development during the next 24 hours. During the next 12 hours the intensity and organization of the convection continued to increase prompting the issuance of a TCFA valid at 271900 Z .

At 2806002, the system had further intensified with Dvorak intensity analysis indicating that surface winds of 35 kt ($18 \mathrm{~m} / \mathrm{s}$) were present. The disturbance now had a central core of intense convection. This prompted the first warning on Tropical Cyclone 04B to be issued at 280600 z .

Figure 3-34-1. Tropical Cyclone 04B near maximum intensity (0105092 December DMSP visual imagery).

During the next 48 hours, Tropical Cyclone 04 B moved in a slow anticyclonic loop while steadily intensifying. At 3012002 November, it had completed its loop and was estimated to have sustained surface winds of $65 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$. Once again this was based solely on the Dvorak intensity analysis of satellite imagery.

Tropical Cyclone 04 B moved west during the next 18 hours, accelerated slightly and intensified to a peak intensity of 75 kt ($39 \mathrm{~m} / \mathrm{s}$) (Figure $3-34-1$). It. then made a slight turn to the west-northwest and accelerated further to $16 \mathrm{kt} \mathrm{(} 30 \mathrm{~km} / \mathrm{hr}$) as it made landfall on the east coast of India $40 \mathrm{~nm}(74 \mathrm{~km})$ north of Nagappattinam (WMO 43340) at 011000Z December. After making landfall, the low-level circulation moved west across the southern tip of India and rapidly weakened. The mid-to-upper
level circulation, however, took a more northwestward track and became displaced from the low-level center by approximately 120 nm (222 km). Warning status was terminated on Tropical Cyclone 04B at 0200002 since the system had no convection associated with it and the low-level circulation was weak and poorly defined.

This weak but persistent low-level circulation now turned to the westsouthwest, entered the Arabian Sea and slowly redeveloped (Figure 3-34-2). By the 3rd of December, the convection was redeveloping near the low-level center and reintensification appeared likely. This prompted the issuance of a second TCFA at 031200 Z . The system continued to intensify and warning status was resumed at 031800 z December.

Figure 3-34-2. The poonly organized remnants of Tropical Cyclone $04 B$ as it entered the Arabian Sea and began to reintensify 10204482 December DMSP visual imageryl.

Figure 3-34-3. The exposed low-level circulation of Tropical Cyclone 04B located just off the east coast of Somalia 10706302 December DMSP visual imagery).

Tropical Cyclone 04B continued to move west-southwest, reaching an intensity of 60 $\mathrm{kt}(31 \mathrm{~m} / \mathrm{s})$ at 050600 z . For the next 42 hours it moved in a general westerly direction across the Arabian Sea around the southern periphery of a low to mid-level anticyclone located near the Persian Gulf. There was no significant change in intensity during this period.

At 070600Z, Tropical Cyclone 04B was within $25 \mathrm{~nm}(46 \mathrm{~km}$) of the Somalia coast and had weakened to 35 kt ($18 \mathrm{~m} / \mathrm{s}$) (Figure 3-34-3). At this point, the low-level circulation, became exposed, moved inland, and then moved southwestward along the coast for 24 hours before dissipating over land. The mid-to-upper level circulation and associated convection moved off to the northwest. The final warning was issued at 0800002.

Figure 4-2
Frequency distribution of the 24-, 48-, and 72-hour forecast errors in 30 nm increments for all significant tropical cyclones in the western North Pacific during the 1984 season.

FORECAST ERRORS (nm)

24-HR 48-HR 72-HR

MEAN:	117	233	363
MEDIAN:	101	211	316
STANDARD			
DEVIATION:	77	135	221
CASES:	492	378	286

CHAPTER IV - SUMMARY OF FORECAST VERIFICATION

1. ANNUAL FORECAST VERIFICATION

a. Western North Pacific Ocean

The positions given for warning times and those at the 24-, 48-, and 72-hour forecast times were verified against the post-analysis "best track" positions at the same valid times. The resultant vector and right angle (track) errors (illustrated in Figure 4-1) were then calculated for each tropical cyclone and are presented in Table 4-1. Figure $4-2$ provides the frequency
distributions of vector errors in 30 nm increments for 24-, 48-, and 72-hour forecasts of all 1984 tropical cyclones in the western North Pacific. A summation of the mean vector and right angle errors, as calculated for all tropical cyclones in each year, is shown in Table 4-2. A comparison of the annual mean vector errors for all tropical cyclones as compared to those tropical cyclones that reached typhoon intensity can be seen directly in Table 4-3. The annual mean vector errors for 1984 as compared to the ten previous years are graphed in Figure 4-3.

Figure 4-1. Illustration of the method to determine vector error and right angle error.

TABLE 4-1.												
	FORECAST ERKOR SUPMARY FOR TRE WESTERN NORTA PACIFIC Signtifichnt tropical cyclones of 1984. (Exbors in nm)											
	marning			24-Hour			48-HOUR			72-HOUR		
	VECTOR ERROR	RT ANGLE ERROR	$\begin{aligned} & \text { NR OF } \\ & \text { WRIGGS } \\ & \hline \end{aligned}$	VECTOR ERROR	$\begin{gathered} \text { RT ANGLE } \\ \text { ERROR } \end{gathered}$	$\begin{aligned} & \mathrm{NR} \mathrm{OF} \\ & \text { WRNGS } \\ & \hline \end{aligned}$	VECTOR ERROR	KT ANGLE ERROR	NR OE WRNGS	VECTOR ERROR	RF ANGILE ERROR	$\mathrm{NR} O \mathrm{~F}$ WRNGS
O1w. ts vernon	31	28	9	116	86	5	147	55	1			
02w. TS whnne	24	10	28	93	44	24	224	114	18	389	224	16
03W. TY Alex	27	23	18	155	93	14	351	197	10	803	328	6
O4w. TS BETTY	13	9	12	72	42	10	105	46	5	83	80	2
05w. TY CARY	13	7	30	92	56	26	190	149	22	282	246	18
06w. TY dinar	20	11	35	142	73	29	336	178	25	564	284	23
OTW. TY ED	12	9	28	140	82	23	232	117	14	246	125	10
O8w. TS EREDA	30	20	22	163	81	9	328	218	B	448	283	6
09\%. TD 09\%	122	105	10	297	248	6	420	296	2			
10w. TS GERALD	25	9	24	236	57	20	311	123	16	331	270	7
11w. TY HozLy	16	12	25	211	73	21	230	149	17	423	316	13
12w. 20 12w	46	8	5	204	16	1						
13w. TY IKE	13	10	42	80	63	39	179	149	35	279	242	31
14W. TS JUNE	70	28	11	121	104	8	125	85	4			
25w. TY Kelcy	27	14	18	225	121	14	302	159	10	244	201	6
16W. TS Lywn	26	21	24	112	63	10	231	178	6	402	362	3
17w. TS maury	28	18	13	215	${ }^{63}$	9	421	221	5	447	0	1
18W. TS NINA	30	12	15	156	37	9	279	85	5	482	246	3
19W. TY OGDEN	30	15	12	227	100	8	620	219	4			
20W. TY PhYllis	15	12	13	113	23	9	233	120	5	498	113	1
21w. TS POY	21	19	9	173	97	5	207	179	1			
22w. is susan	13	9	5	47	25	1						
23W. TD 23N	13	16	4									
246. TY THAD	19	18	21	114	86	17	286	178	12	635	319	8
25w. STY vanessa	14	11	31	102	68	27	179	106	23	245	165	19
26W. TY warren	21	9	31	95	53	29	205	128	27	353	219	23
27w. TY RGNES	11	7	28	72	23	25	139	54	21	197	69	18
28w. STY BILL	20	9	52	98	50	46	226	141	41	406	297	39
296. TY CLARA	20	13	30	94	61	26	185	93	22	265	131	18
30W. TY DOYLE	13	10	26	69	58	22	193	161	19	397	310	15
ALI FORECASTS:	22	14	611	117	66	492	233	137	378	363	231	286

ANNUAL MEAN FORECAST ERRORS (NM) FOR THE WESTERN NORTH PACIFIC

YFAR	24-HOUR		48-HOUR		72-HOUR	
	VECTOR	RIGHT ANGLE	VECTOR	RIGHT ANGLE	VECTOR	RIGHT ANGLE
1971	111	64	212	118	317	117
1972	117	72	245	146	381	210
1973	108	74	197	134	253	162
1574	120	78	226	157	348	245
1975	138	84	288	181	450	290
1976	117	71	230	132	338	202
1977	148	83	283	157	407	228
1978	127	75	271	179	410	297
1979	124	77	226	151	316	223
1980	126	79	243	164	389	287
1981*	123	75	220	119	334	168
1982*	113	67	237	139	341	206
1983*	117	72	259	152	405	237
1984*	117	66	233	137	363	231

* The technique for calculating right angle error was revised in 1981; therefore, a direct correlation in right angle statistics cannot be made for the errors computed before 1981 and the errors computed since 1981.

Figure 4-3. Annual mean and median vector errors (nm) for all tropical cyclones in the western North Pacific.

b. North Indian Ocean

The positions given for warning times and those at the 24-, 48-, and 72-hour valid times were verified for tropical cyclones in the North Indian Ocean by the same methods used for the western North Pacific. It should be noted that due to the low number of North Indian Ocean tropical cyclones, these error statistics should not be taken as representative of any trend.

Table 4-4 is the forecast error summary for the North Indian Ocean and Table 4-5 contains the annual average of forecast errors for each year through 1974. Vector errors are plotted in Figure 4-4. (Seventytwo hour forecast errors were evaluated for the first time in 1979). There were no verifying 72-hour forecasts in 1983.

TABLE 4-5.

ANNUAL MEAN FORECAST ERRORS FOR THE NORTH INDIAN OCEAN

YEAR	24-HOUR		48-HOUR		72-HOUR	
	VECTOR	RIGHT ANGLE	VECTOR	RIGHT ANGLE	VECTOR	RIGHT ANGLE
1971*	232	-	410	-	-	-
1972*	224	101	292	112	-	-
1973*	182	99	299	160	-	-
1974*	137	81	238	146	-	-
1975	145	99	228	144	-	-
1976	138	108	204	159	-	-
1977	122	94	292	214	-	-
1,978	133	86	202	128	-	-
1979	151	99	270	202	437	371
1980	115	73	93	87	167	126
1981**	109	65	176	103	197	73
1982**	138	66	368	175	762	404
1983**	117	46	153	67	-	-
1984**	154	71	274	127	388	159
The the	tern Bay	of Bengal an responsibil	the Ar y until	ian Sea wer the 1975 tr	not incl cal cy	uded in lone season.
	nique re, a d errors	r calculatin rect correla computed bef	$\begin{aligned} & \text { right } \\ & \text { on in ri } \\ & 21981 \end{aligned}$	gle error wa ght angle st ad the error	revise istics computed	in 1981; annot be made since 1981.

Figure 4-4. Annual mean vecton errons (nm) for all thopical cyclones in the North Indian Ocean.

2. COMPARISION OF OBJECTIVE TECHNIQUES

a. General

Objective techniques used by JTWC are divided into five main catagories:
(1) extrapolation;
(2) climatological and analog techniques
(3) model output statistics;
(4) dynamical models; and
(5) empirical and analytical techniques

In September 1981, JTWC began to initialize its array of objective forecast techniques (described below) on the six-hour-old preliminary best track position (an interpolative process) rather than the forecast (partially extrapolated) warning position, e.g. the $0600 z$ warning is now supported by objective techniques developed from the 00002 preliminary best track position. This operational change has yielded several advantages;
*techniques can now be requested much earlier in the warning development time line, i.e. as soon as the track can be approximated by one or more fix positions after the valid time of the previous warning;
*receipt of these techniques is virtually assured prior to development of the next warning; and
*improved (mean) forecast accuracy. This latter aspect arises because JTWC now has a more reliable approximation of the short-term tropical cyclone movement. Further, since most of the objective techniques are biased for persistence, this new procedure optimizes their performance and provides more consistent guidance on short-term movement, indirectly yielding a more accurate initial position estimate as well as lowering 24-hour forecast errors.
b. Description of Objective Techniques
(1) XTRP -- Forecast positions for 24- and 48-hours are derived from the extension of a straight line which connects the most-recent and 12-hour-old preliminary best track positions.
(2) CLIM -- A climatological aid providing 24-, 48-, and 72-hour tropical cyclone forecast positions (and intensity changes in the western North Pacific) based upon the position of the tropical cyclone. The output is based upon data records from 1945 to 1981 for the western North Pacific Ocean and 1900 to 1981 for the North Indian Ocean.
(3) TPAC -- Forecast positions are generated from a blend of climatology and persistence. The 24- and 48-hour positions are equally weighted between climatology and persistence and the 72-hour position is one quarter persistence and three quarters climatology. Persistence is a straight line extension of a line connecting the current and 12-hour-old positions. Climatology is based on data from 1945 to 1981 for the western North

Pacific Ocean and 1900 to 1981 for the North Indian Ocean.
(4) TYAN78 -- An updated analog program which combines the earlier versions TYFN 75 and INJAN 74. The program scans a 30 -year climatology with a similar history (within a specified acceptance envelope) to the current tropical cyclone. For the western North Pacific Ocean, three forecasts of position and intensity are provided for 24-, 48-, and 72-hours: RECR a weighted mean of all accepted tropical cyclones which were catagorized as "recurving" during their best track period; STRA - a weighted mean of all accepted tropical cyclones which were catagorized as moving "straight" (westward) during their best track period; and TOTL - a weighted mean of all accepted tropical cyclones, including those used in the RECR and STRA forecasts. For the North Indian Ocean, a single (total) forecast track is provided for l2-hour intervals to 72 hours.
(5) COSMOS -- A model output statistics (MOS) routine based on the geostrophic steering at the 850-. 700-, and $500-\mathrm{mb}$ levels. The steering is derived from the HATTRACK point advection model run on Global prognostic fields from the FLENUMOCEANCEN NOGAPS prediction system. The MOS forecast is then blended with the 6 -hour past movement to generate the forecast track.
(6) OTCM -- (One-way Interactive Tropical Cyclone Model) A course-mesh, three-layer in the vertical, primative equation model with a 205 km grid spacing over a $6400 \times 4700 \mathrm{~km}$ domain. The model's fields are computed around a bogused, digitized cyclone vortex using FLENUMOCEANCEN Numerical Variational Analysis (NVA) or NOGAPS prognostic fields for the specified valid time. The past motion of the tropical cyclone is compared to initial steering fields and a bias correction is computed and applied to the model. FLENUMOCEANCEN NOGAPS global prognostic fields are used at 12-hour intervals to update the model's boundaries. The resultant forecast positions are derived by locating the 850 mb vortex at six hour intervals to 72-hours.
(7) NTCM -- (Nested Tropisal Cyclone Model) A primitive equation model with similar properties as the oTCM. The NTCM differs by containing a finer scale "nested" grid, initializing on NVA analysis fields only, not containing a (persistence) bias correction, and being a channel model which runs independent of FLENUMOCEANCEN prognostic fields (not requiring updating of its boundaries). The "nested grid" covers a $1200 \times 1200 \mathrm{~km}$ area with a 41 km grid spacing which moves within the coursemesh domain to keep an 850 mb vortex at its center.
(8) TAPT -- An empirical technique which utilizes upper-tropospheric wind fields to estimate acceleration associated with the tropical cyclones interaction with the mid-latitude westerlies. It includes guidelines for duration of acceleration, upper-limits, and probable path of the cycione.
(9) CLIP -- A statistical
regression technique based on climatology, current intensity and position and past movement. This technique is used as a crude measure of real forecast skill when verifying forecast accuracy.
(10) THETA E -- An empirically
derived relationship between a tropical cyclone's minimum sea-level pressure (MSLP) and 700 mb equivalent potential temperature (θe) was developed by Sikora (1976) and Dunnavan (1981). By monitoring MSLP and θe trends, the forecaster can evaluate the potential for sudden, rapid deepening of a tropical cyclone.
(11) WIND RADIUS -- Following an analytic model of the radial profiles of sea-level pressures and winds in mature tropical cyclones (Holland, 1980), a set of radii for $30-, 50-$, and $100-\mathrm{knot}$ winds based on the tropical cyclone's maximum winds have been produced to aid the forecaster in determing forecast wind radii.
(12) Dvorak -- An estimation of a tropical cyclone's current and 24 -hour forecast intensity is made from interpolation of satellite imagery (Dvorak, 1973, 1982) and provided to the forecaster. These intensity estimates are used in conjunction with other intensity-related data and trends to forecast
tropical cyclone intensity.
JTWC currently uses TPAC, TAPT, TYAN78, COSMOS, and OTCM operationally with NTCM in an evaluation mode to develop track forecasts.

c. Testing and Results

A comparison of mean and median forecast errors (for a non-homogeneous data set) is provided for selected techniques in Table 4-6 for all western North Pacific tropical cyclones and in Table 4-8 for all North Indian Ocean tropical cyclones.

A comparison of selected techniques is included in Table 4-7 for all western North Pacific tropical cyclones and in Table 4-9 for all North Indian Ocean tropical cyclones. In these tables, "X-AiIS" refers to techniques listed vertically. The example in Table 4-7 compares COSM to OTCM, i.e. in the 461 cases available for a (homogeneous) comparison, the average vector error at 24 hours was 125 nm for COSMOS and 129 nm for OTCM. The difference of 4 nm is shown in the lower right. (Differences are not always exact, due to computational round-off which occurs for each of the cases available for comparison).
 24-BONR FCRECAST ERRCRS (NO)

TABLE 4-9. 1984 ERROR STATISTICS FOR SEIECTED OBJECTIVE TECHNIQUES IN THE NORTH INDIAN OCEAN

48-HOUR FORECAST ERRORS (NM)

72-HOUR FORECAST ERRORS (NM)

	JThC		TOIL		NICM		OTCM		TPAC		${ }_{\text {(NM) }}^{\text {CLTM }}$	
JTWC	$\begin{array}{r} 16 \\ 388 \end{array}$	$\begin{array}{r} 388 \\ 0 \end{array}$										
TOIL	$\begin{array}{r} 12 \\ 475 \end{array}$	$\begin{aligned} & 368 \\ & 107 \end{aligned}$	$\begin{array}{r} 22 \\ 476 \end{array}$	$\begin{array}{r} 476 \\ 0 \end{array}$								
NICM	$\begin{array}{r} 15 \\ 417 \end{array}$	$\begin{array}{r} 383 \\ 34 \end{array}$	$\begin{array}{r} 21 \\ 567 \end{array}$	$\begin{array}{r} 475 \\ 92 \end{array}$	$\begin{array}{r} 25 \\ 547 \end{array}$	$\begin{array}{r} 547 \\ 0 \end{array}$						
OTOM	$\begin{array}{r} 6 \\ 290 \end{array}$	$\begin{array}{r} 489 \\ -198 \end{array}$	$\begin{array}{r} 11 \\ 304 \end{array}$	$\begin{array}{r} 542 \\ -237 \end{array}$	111	$\begin{array}{r} 669 \\ -382 \end{array}$	$\begin{array}{r} 12 \\ 290 \end{array}$	$\begin{array}{r} 290 \\ 0 \end{array}$				
TPAC	$\begin{array}{r} 16 \\ 616 \end{array}$	$\begin{aligned} & 388 \\ & 229 \end{aligned}$	22 545	$\begin{array}{r} 476 \\ 69 \end{array}$	25 553	$\begin{array}{r} 547 \\ 5 \end{array}$	12 669	$\begin{aligned} & 290 \\ & 379 \end{aligned}$	$\begin{array}{r} 26 \\ 566 \end{array}$	566 0		
CTIM	16 691	388 303	22 616	476 140	25 609	547 61	12 788	290	26 629	566 64	26 629	629 0

CHAPTER V - APPLIED TROPICAL CYCLONE RESEARCH SUMMARY

The following articles delineate the extent of the research program at Naval Environmental Prediction Research Facility (NAVENVPREDRSCHFAC) dedicated to supporting the operations at JTWC. There are three major research departments at NAVENVPREDRSCHFAC, each contributing to the overall. program; research on current and future tropical cyclone models is performed in the Numerical Modeling Department, the Tactical Applications Department conducts statistical applications studies, and the Satellite Processing and Display Department develops computer interactive techniques.

THE NAVY TWO-WAY INTERACTIVE NESTED TROPICAL CYCLONE MODEL (NTCM)
(Fiorino, M., NAVENVPREDRSHFAC)

Two techniques for incorporating persistence into the NTCM forecast were tested on 157 independent cases from the 1982 and 1983 WESTPAC seasons. The first method uses the bias-corrector strategy in which the winds around the storm are modified to force the storm to initially move with the observed current motion. The bias-corrector is a pre-processing technique because the forecast track is affected before the model integration. The second method uses the post-processing technique of COSMOS. In this method, the 72-hour forecast position is retained and a combination of persistence and a straight line between the initial position and 72 -hour point is used to fill in for the 24- and 48-hour positions. Superior results were obtainer. with the post-processing method. The median forecast errors at 24, 48, and 72 hours were 90, 201, and 296 nm compared to 102,225 , and 312 nm for the pre-processing method. Although the bias-corrector degraded the median 72-hour forecast error of the NTCM, it was effective in reducing the speed bias.

One-Way influence boundary conditions have been built into the NTCM. The initialization of the large-scale flow and the vortex were also modified to accommodate the change to the lateral boundary conditions. Experiments are underway to determine how the time variation of the flow at the boundaries affects the forecast track. The new version of the NTCM with one-way boundaries will be ready for the 1985 WESTPAC season.

TROPICAL CYCLONE SYNOPTIC ANALYSIS DISPLAY SYSTEM
(Tsui, T., NAVENVPREDRSCHFAC)

A new SPADS sor̄tware is under development for the purpose of demonstrating that the existing computer softwares can be adapted for SPADS and be streamlined
together to provide tropical cyclone forecasters a means to investigate immediate synoptic situation changes. This new SPADS system will be able to process satellite IR, VIS, and microwave data as they become available and translate these digital data into meteorological information which is to be merged with the FNOC wind/height field analysis. To maximize the utility of the system, the modified wind/height field should be updated every three hours so the forecasters could detect the most recent changes in the synoptic-scale flow influencing the tropical cyclone movement.

TROPICAL CYCLONE OBJECTIVE DECISION-TREE FORECASTING AID
(Elsberry, R. L. and J. Chan, NAVPGSCOL)

In view of the short tour length and limited forecast experience of many JTWC rDO's, an objective approach to the tropical cyclone track forecasting decision making process is desired. Forecasters need assistance in determining when, where, and how to use the objective aids. A research effort is now underway to study the performance of different tropical cyclone forecast aids for various cyclone characteristics under different environmental conditions. Each of the factors, including center fix errors, affecting the accuracy of objective forecast aids will be incorporated into a decision tree to assist the forecaster in following a logical and reasonable path in selecting appropriate aids in any given situation. In FY85, NTCM will be used as a test case to prove the concept.

JTWC CLIMATOLOGICAL DATA SET

(Tsui, T., NAVENVPREDRSCHFAC)

The JTWC tropical cyclone data base has been updated and expanded. The data base resides on FNOC computer disks on a storm-by-storm basis containing fix data, best track information, and official and objective aid forecasts. All three data sets have a separate but consistent data format. The data period begins at 1966 for the fix data, 1945 for the best track information, and 1967 for the official and objective aid forecasts. Currently, the last year included in this data set is 1983.

A STATISTICAL METHOD FOR 1 to 3 DAY TROPICAL CYCLONE TRACK PREDICTION
(Matsumoto, C. R. and W. M. Gray, Colorado State University)

Growing out of the Colorado state University's own research effort, a new
method of incorporating climatology persistence and synoptic data to forecast the 1 to 3 day tropical cyclone motion has been developed in an attempt to improve the accuracy of track prediction. Cyclones are stratified based on their position relative to the 500 mb subtropical ridge to better define the environmental influences on the cyclones. The 72-hr track forecast is segmented into three $24-\mathrm{hr}$ time steps to permit the application of updated persistence and synoptic data relative to the new cyclone position as the 24-hr displacements are stepped forward to the desired forecast projection. Since the initial results warrant further investigations,
NAVENVPREDRSCHFAC will evaluate the program under a simulated operational environment in FY85.

TROPICAL CYCLONE HAVEN STUDIES

(Brand, S. NAVENVPREDRSCHFAC)

With the completion of seven new hurricane haven studies, the Hurricane Havens Handbook for the North Atlantic Ocean provides 22 port and harbor evaluations. In addition, the haven study for Pearl Harbor has been completed and published. Requests for copies for official use may be directed to Commanding Officer, Attn: Technical Library, Naval Environmental Prediction Research Facility, Monterey, CA 93943-5106. Registered qualified users may request copies from Director, Defense Technical Information Center, Cameron Station, Alexandria, VA 22314. Others may purchase copies from National Technical Information Service, U. S. Department of Commerce, Springfield, VA 22151.

NAVY TACTICAL APPLICATIONS GUIDE (MTAG), Vol. 6

(Fett, R., NAVENVPREDRSCHFAC)

An effort is now underway to develop a series of examples demonstrating the use of high quality satellite data for analysis and forecasting in the tropics. Both polar orbital and geostationary satellite data are used to study the evolution of certain weather effects or of a particular weather phenomenon at a given time. These examples are intended for publishing in the NTAG Volume 6, Part I, Tropical Weather Analysis and Forecast Applications, and Volume 6, Part II, Tropical Cyclone Weather Analysis and Forecast Applications. This NTAG Volume 6 is scheduled to be published in 1988.

STATISTICAL TROPICAL CYCLONE FORECASTING

 AIDS FOR THE SOUTHERN HEMISPHERE(Keenan, T., Bureau of Meteorology, Australia)

Statistical models for forecasting Southern Hemisphere tropical cyclones have been adapted and developed. From a limited
sample test, it is apparent that the Australian aids provide a level of assistance similar to the JTWC aids. The forecast errors of the Australian statistical aids range from 111 to 148 nm for $24-\mathrm{hr}$ forecast and from 215 to 252 nm for $48-\mathrm{hr}$ forecast. The classical regression technique turns out to be the best aid. This regression technique is derived from prescreened data sets which consist of $1000,850,700,500$, and 300 mb height fields, climatology predictors and persistence predictors. All the Australian aid programs reside on JTWC disk files in the FNOC computer system. Forecasters can activate these aids by providing date-time-group, previous and current storm locations and intensities.

SATELLITE BASED TROPICAL CYCLONE INTENSITY FORECASTS

(Cook, J. and T. Tsui, NAVENVPREDRSCHFAC)

An objective spiral analysis technique for tropical cyclone intensity forecasting has been installed on the Satellite Data Processing And Display System (SPADS). Through the satellite IR image displayed by SPADS, the technique first accepts a user described outline of a major cloud band of the tropical cyclone. The technique then objectively finds the best fitting spherical logarithmic spiral to the cloud band, and performs multiple Fourier analyses of the radiance field along orthogonal spirals to the band. By using these Fourier coefficients along with climatology and persistence predictors, tropical cyclone intensity forecasts can be deduced from regression equations. Independent tests show that the spiral technique possesses remarkably better skill in estimating the current intensity (6 kts RMS errors) than the Dvorak technique (15 kts RMS errors). Also, the spiral technique has a reliable 12-hr intensity forecasting skill (14 kts RMS errors).

CHARACTERISTICS OF NORTH INDIAN OCEAN TROPICAL CYCLONE ACTIVITY

(Lee, C. S. and W. M. Gray, Colorado State University)

A detailed individual case analysis is made of each of the North Indian Ocean (NIO) tropical cylcones which occurred during the 1979 First GARP GlobalExperiment (FGGE) period. Each NIo tropical cyclone's characteristics from genesis to decay are discussed. These tropical cyclones are found to form almost exclusively within the monscon trough. Low-level equatorial westerly winds and Southern Hemisphere influences appear more important for the NIO tropical cyclones than for monsoon trough tropical cyclone formations in other regions. However, their basic structure, intensity change, and movement characteristics are very similar to tropical cyclones occurring in the other regions. A NAVENUPREDRSCHFAC technical report of this study will be published in early 1985.

TROPICAL CYCLONE READINESS CONDITION SETTING PROGRAM
(Brand, S. NAVENVPREDRSCHFAC and Jarrel, J., Science Applications, Inc.)

A procedure for setting tropical cyclone readiness conditions with a high degree of reliability has been developed. The methodology utilizes a large number of computer-simulated forecasts for actual tropical cyclones since 1899 that passed near Key West, FL and Guantanamo Bay, Cuba. Wind probabilities were computed from these
forecasts assuming present-day official forecast error characteristics, and then compared to hindsight estimates of actual winds. These data were used to establish tropical cyclone condition thresholds at desired levels of confidence as related to wind probability. Sample nomographs with 95% threshold confidence values have been developed for hurricane readiness conditions at Key West and Guantanamo Bay. In the coming year, the readiness condition setting program will be adapted for five Pacific sites (Subic Bay, Buckner Bay, Yokosuka, Guam, and Pearl harbor). In addition, this program will be developed for the afloat units in the Pacific area.

ANNEX A
 TROPICAL CYCLONE TRACK AND FIX DATA

1. WESTERN NORTH PACIFIC CYCLONE DATA

FIX PROPICAL STORM YERNON

SATELLITE FIXES

	HRNG			72－HR					$\begin{gathered} 35 \text { KTS } \\ 72-H R \\ 00 \\ 0: \\ 0 \\ 0 \end{gathered}$
AVG FORECAST POSIT ERROR	13.		S．	83.					
AVG RIGHT ANGLE ERROR	9.		4 E．	8.					
AVG INTENSITY MAGNITUDE ERROR	2.		4.						
AVG INTENSITY BIAS	12．		${ }_{5}^{2}$.	$\stackrel{9}{2}$					
distance traveled by tropical cyclone is 1i57．nM									
AVERAGE SPEED OF TROPICAL CYCLONE 15 10．KNOTS									

SAtellite fixes

${ }_{\text {FIX }}^{\text {NO }}$	$\operatorname{TI}_{(2)}$	posi	$\begin{aligned} & \text { TX } \\ & \text { TION } \end{aligned}$	ACCRY	dVORAK CODE	COMMENTS	SITE
	012023	18．8M	146．4E	PGN 5	10．0／0．0	INIT OBS	POTU
2	e20902	16.1 N	$146.5 E$	$P \mathrm{PCN} 5$			PGTU
3	921800	11．8N	$136.4 E$ $131.0 E$	${ }^{\text {PCN }} \mathrm{PCN} 5$	T1．0／1．0	ULCC FIX	PGTJ
5	932121	9.6 N 14.6 N	$130.0 E$ $128.0 E$	PCN 6			PGTH
7	940337	15．6N	L28．0E	PCN $P \mathrm{PCH}$	T1．5／1．5	INIT ${ }^{\text {INIT }}$ OBS	PGTHK
8	046709	14.6 N	127．1E	PCN 5			PGTH
9	040709	16.1 N	128．0E	PGN 5			RPMK
10	041001	$15.5 N$	127．5E	PCN 5			PGTH
12	041417	14．8N	127．4E	PCN 6			PGTU
13	041808	15.1 N	127．1E	PGN 6	T0．5／0．5	INIT OBS	PGTH
15	0520417	15.1 N 14.0 N	126．4E	${ }_{P C N} \mathrm{PCN}$	T1．0／1．0－	INIT OBS	PGTH
16	050117	14：7N	125．0E	PCN 5	．T1．5／1．5／50．0／24HRS		RPMK
17	056657	14.4 N	123．8E	PCN 5			PGTH
18	851119	14．7N	123．4E	PCN 6			RPMK
20	${ }_{651357}$	15：2N	122．${ }^{\text {en }}$	PCN 6			PGTH
21	－518ee	15．2N	122．0E	PCN 6	T1．0／1．0＋／D0．5／24MRS		PGTW
22	851942	15.3 N	121．4E	$P \mathrm{PCN} 6$		INIT 085	POTN
ご	95 3358	15．3N	128．6E	PCN 5	T1．5／1．5＋／50．0／23HRS	INIT OES	RPMK
25	¢6800	15.6 N	129．8E	PCN 6			PCTU
26	966644	15.8 N	119．7E	PCN 5			PGTH
27	961655	16．5N	119．4E	PCN PCN 6		ULCC FIX	PGTL
29	061808	17.6 N	118．5E	PCN 6			PGTU
39	061929	17．0N	117．9E	PCN PCN	T2．5／2．5／D1．5／24HRS		PGTU
32	${ }_{862335}$	17．3N	118．2E	${ }^{\text {PCN }} 5$	T2．0／2．0／S0．0／25HRS	EXP LLCC	PODN
33	970218	17．7N	118．2E	PCN 5	T1．5／1．5＋／50．0／E6HRS		RPMK
34	976600	17．${ }^{17}$	115.8 E	PCN 6	T2．0¢2．6	INIT OBS ULCC FIX	PGTH
35	878818	17：9N	116．3E		T2．0／2．84／00．5／32kRS		PGTK
37	071200	18．an	116．6E	PCN 6			PGTU
39	671458	18．4N	115．3E	PCN 5			RODN
39	67186% 072659	18．3N	115．TE	PCN PCN	T2．0／2．5＋／W0．5／23HRS		PGPMK
41	Q72138	18．5N	115．3E	PCN 5			PGTW
42	972249	18．5N	115．9E	PCN ${ }^{\text {P }}$	T3．0／3．0／D1．0／24HRS		RODN
44	8890e日	18．6N	$115.3{ }^{\text {2 }}$	PCN 6		ULGC FIX	PGTU
45	688157	19．6N	114．3E	PCN PCN 6	T3．0／3．0／01．0／2ehrs		PGTH
47	9888917	2e．er	114．7E	${ }_{\text {PCN }}{ }^{\text {PCN }}$	T3．0		RPMK
49	081147	26．3N	114．0E	PCN 1		ULCe FIX	PGTD
50	981148	20．1N	114．15	PCM 6			RPMK
51	${ }_{881438}$	20．6N	113．1E	PCN 3		ULCC FIX	
53	©81860	20．5N	112．7E	PCN 6	T3．0／3．0－／D1．0／24HRS		PGTH
54	882946	21．3N	${ }^{1} 112.5 E$	${ }^{\mathrm{PCN}} \mathrm{PCN} 6$.			
55	0960.8	C1：HN	112．4E	PCN ${ }^{\text {P }}$	73．0／3．0	INIT OES	RPMK
57	09613 ？	21．8N	111．gE	PCN 3			PGT
58	090608	22．0n	111．${ }^{\text {AE }}$	PCN 6			PGTH
59	991127	22．1N	109．8E	PCM 5			RSKO
－ 61	091138	22．${ }^{\text {en }}$	107． CE	PCN 6			RODH
62	691138	22．6N	189．9E	PCN 6			RPHK

AIRCRAFT FIXES

RADAR FIXES

		posixiton	Radar	AcCRY		EYEM		comments	positipar	Unio ${ }_{\text {Sta }}$
$\times 1$			Lend					eve 90 pct elip		98333 88321 88321

TYPHOON CARY
GEST TRACK
DATA

 Н明に NANNNNNANNNNNNNNNNNNNNNNAN NNNNNNNN NNNNNNNNNNN	
ААА 	
 $\triangle 0^{\circ} \cdot \mathrm{NAPA}$	
$Q Q Q O Q \otimes \dot{\circ}$ 2	
. -..... 	

FIX POSITIONS FOR OYOLLONE NO. E
SATELLITE Fixes

NOTICE - THE ASTERISKS (*) INDICATE FIXES UHREPRESENTATIYE AMD NOT USED FOR BEST TRACK PURPOSES.

NOTICE - THE ASTERISKS (*) INDICATE FIXES UNREPRESENTATIVE ANB NOT USED FOR BEST TRACK PURPOSES.

TROPICAL DEPRESSION TDEPL
FIX POSITIONS FOR CYCLONE No. s

		SAtELLItE Fixes				
$\begin{aligned} & \text { Fix } \\ & \text { MO. } \end{aligned}$	TIME	$\stackrel{\text { FIX }}{\operatorname{POSITION}}$	ACCRY	DVORAK CODE	COMMENTS	SITE
				70.5/0.5	INIT OBS	
2	872048	$6: 4 N 139.4 E$	PCN $P \mathrm{PCN}$	T1.0<1.0	INIT OBS	PGTU
4	880639	8.6N 139.4E	PCN 6		ULCC FIX	PGTL
5	081238	8.3N 134.4E	PCN 5			PGTH
${ }_{6} 8$	982582	7.6N 136.8 EE	PCN PCN	11.0/1.0+/50.0/254RS		PGTJ
8	991200	$8.9 \mathrm{~N} \mathrm{133.7E}$	$P \mathrm{PN} 6$			PGTU
19	09140	9.2N $133.4 E$	${ }^{P C N} 6$	T1.0/1.0+/50.0/24HRS	EXP LLCC	PGTU
11	092147	10.7 N 129.6E	PCN 6			PGTH
12	100658	11.0N 129.4E	$P \mathrm{PN} 5$		ULCC Fix	PGTU
13	100614	12.0N $128.4 E$	PCN 6	T0.010.0	INIT OCS ULCC FIX	PGTH
15	181839	13.7N 130.4E	PCN 6	T1.0/1.04/50.0/24HRS		PGTW
16	192255	15.6N 130.4E	PCN 5			PGTH
17	102255	15.5N 138.9E	${ }^{\text {PCN }} 5$	T1.8/1.0	INIT OBS	PGPTL
19	110608	17.6N $129.9 E$	PCN 6	T1.5/1.5 /D1.5/24HRS		PGTU
20	116743	17.5N 129.1E	PCN 5	T1.0/2.0	INIT OES	RODN
22	111006 111200	18.0N 129.9E	${ }^{\text {PCN }} \mathrm{PCN} 6$		ULCC FIX	PGTH
23	111319	18.5N 130.2E	PCN 6		ULCC FIX	PGTH
- ${ }^{2}$	111800	19.4 H 129.4 E	PCN 6	T2.5/2.5-/D1.5/23HRS	EXP LLCC	PGT
	111846	19.5N 129.2 LE	PCH 6			PGT
2 2	112104	19.GN 129. 8 EE	PCN 5			PGTH
28	12006	20.5N 12?.2E	PCN 6			PGTL
29	129208	20.8N 127.2E	PCN 5			PGTW
	120600	2L. ${ }^{\text {2N }}$ 126.6E	PCN 5	T2.0/2.0 /D1.0/33HRS		RPMK
* 32	120731	22.1N $126.3 E$	PCN 5	T1.5/1.5+/50.0/25HRS		PGTU
- 33	120944	22. 1 N 126.1E	PCN 5		ULCC FIX	PRMM
34	121169 121109	包: 1 IN. 126.65	PCN_{6}			RSKO
	121200	22. $1 \mathrm{~N}^{126.2 E ~}$	PCN 6			PGTU
* 32	121440		${ }^{\text {PCN }} \mathbf{5}$	T1.0/1.5 /We.5/11HRS		PGTM
$\stackrel{39}{ }$	12 Le 16	2a.5N 123.7E	PCN 6	T1.0r1.s \%U.stilurs		RODN
$\times 48$	122225	23.3N 123.3E	${ }_{P C N} \mathrm{PCN}$			
* 41	122348	23.0N 123.8E	PCN 5	T1: 51.5	INIT OBS	RSKO
* 43	139146	22.9N 122.4E	PCN 5			PGTH
* 45	130718	23.0N 121.5E	PCN 5			RPMK
46	131845	23. 0 N 121.4E	PCN 5		ULCC FIX	PPTV
* 47	131104	23.5N ${ }^{2}$ 20. $21.5 E$	PCN 6 PCN			RODH
+48	131208	23. ${ }^{\text {2N }}$ I $121.6 E$	PCN 6		;	PGTL
50	131420	23. 2 N 121.2E	PCN 5		\%	PGTH
51	131800	2E.7N $125.0 E$	PCN 6	T1.0/1.0-/50.0/24HRS		
52	132003	E2. 6 H 120.6E	PCN_{5}			PGTU
54	132 l	2:.7N 120.6E	PCN 5	T2.5/2.5	INIT OBS	RODH
55	132323	21.9N 120.2E	PCH 5	TE.0/2.0-/D0.5/24HRS		RSkO
56	148119	ट2. 8 CN 120.4 E	PCN PCN	T1.5/1.5-/50.0/24HRS		PGT
58	141043	23.3N 121.6E	PCN 5			RPMK
59	141206	23.2N 119.8E	PCN 6		ULCC 23.5N 123.4E	PGTL
69	141480	23.8N 120.9E	PCN 5		ULC FIX	PGTU
61	141808	23.3N 119.5E	PCN 5	10.0/0.0 WI.0VE4HRS		RODN
63	142 es 9	e4.3N 118.2 E	PCN 5	T1.0/1.0	ULCC FIX	RPMK

AIRCRAFT FIXES																			
FIX	(2) ${ }^{\text {TME }}$	POSITION	FLT	${ }^{\text {70, }} \mathrm{HGT}$	MSts	MAX	$-5 F c$	$\begin{aligned} & - \text { UND } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { DIR } \end{aligned}$	FLT	$\begin{aligned} & -\mathrm{LVL} \\ & -\mathrm{BRG} \\ & \hline \end{aligned}$		NAY	CRY MET	EYEE	EYE ORIENDIAM/TATION	OUTYE TM ${ }^{\text {THP }}$		N\% N
* ${ }^{2}$	116729 120027	17.3N 129.5E	1500F7		1003 1063	25	310 830		159 160	25	319 036	1375	8	${ }^{20}$			$+26+23+22$	89	3

	LRNG	FOREGAST 24-HR	48-HR	72-4R	$\begin{aligned} & \text { TYPR } \\ & \text { TRNG } \end{aligned}$	$N S_{4}$	$\begin{aligned} & \text { LE OVER } \\ & \text { AB-HR } \end{aligned}$	$\begin{array}{ll} 35 \\ 7 e^{K T H} \end{array}$
AVG FORECAST POSIT ERROR	16.	111.	238.	423.	16.	111.	236.	423.
AVG RIGHT ANGLE ERROR	11.	73.	149.	316. 13.	11.	$\begin{array}{r}73 . \\ 6 . \\ \hline\end{array}$	149.	316
AVG INTENSITY MAGNITUDE ERROR	-1.	6. 3.	14.	-13.	$-{ }^{\text {- }}$ -	3.	14.	-11
NUMEER OF FORECASTS	25°		17	${ }^{13}{ }^{\text {. }}$	25°	21	17°	13

FIX POSITIONS FOR CYELONE NO. 13

	S	T TRAC				NING				24					48	OUR F				72	OUR		
MO-bA-HR	-		UIND		ST	WIMD		HIND		SIT	UIND		WIND			WIND		IND		S	UIND		
0913002		171.5	25		0.0	0.	-	0.	0.0	- 0.0	θ.		${ }^{6}$.		0.0			0.		0			
1306	21.	170.8				8	-8	0			-	-					-6				\bigcirc		
091312	20.8	171.8	30				4				O	-8.		0.6	- 8.0			-		$\theta .8$		-6	
O91318	20.6	171.8	35	21. ${ }^{2}$	169.8	38	48	5.	22.9	167.	55	271.	18	25.2	164. 7	65	375.	5		163	75.	219.	
0914052		${ }_{172}{ }^{\text {170 }}$	45	21.7	171.7	48	45	5	22.3	${ }^{1} 170$	66.	250.		23.2	${ }^{166}$ 16. ${ }^{\text {2 }}$	78	436		25	162. ${ }^{163}$	85	411	15
091412 z	己ᄅ己 9	172.0	45		171.8	45	73		$2{ }^{2}$	170.	65	300.		25.4	168.6	75	380		28	166.0	85	304.	35.
091418	23.9	172.6	4		171.6	45	25			170.8	65	68.		31.5	169.1		174	5.	33.9	167.9	96	32.	50.
0915092	25. 21	171.7 171.4	5		171.7 171.5	45	16	-5.	29.2	170.2	6	${ }^{99}$ 93.	19	33.2	168.0	75.	149	-5	${ }^{36} 4$	166.8	65.	26.	30
091512		171	65	27.3	171	6	30	5.	31.5	169.5	?	164		35.7		78	137	20		\bigcirc		-0	-
091518	29	170.2	76	29.9	178	70	6		35.4	4167.7	75	243		41.2	178.4	60	${ }_{4}$	20	${ }_{8}^{8.0}$	0.	8	-0.	
0916002	30.	168	70	39.2	168	70	\pm	a.	36	166.1	69	243.	10.	42.4	171.7	40	424	5	Q.e	$0 \cdot 0$	0	-0:	0
091606	31.0	167	78	31.3	16	?	9		34	163.	50.	2		- 0	- ${ }^{-1}$	0.	-0.	0	$0 \cdot 8$	0.8	\bigcirc	-0.	0.
0916182	31	165.7	75		165.5	65	$1 \stackrel{1}{2}$	-10	34.7	161.8	50	322	18		$0 \cdot 0$		-0	\bigcirc	0.0	0.0			
091700	32.2	165.3	70	32	165.1	5	12		33.7	7163.0	35	326.		0.0	$0 \cdot 0$		-6	.	0.0	0.8	-	-0.	0
091706	33.0	166.8	68	32.9	166.1							-8	0	0.0	- 0.0	0	-0.	8	0.0	8.6	0	-0.	.
1712	33.6	167.0	50	33.7	167.2	45	$\frac{12}{31}$	${ }_{6}$		${ }^{\circ}$		-6	8	- 0	- 0.8			$\stackrel{0}{0}$	0.0	0.0		-0.	${ }^{\circ}$
O9180ez	35.4	169.2	35	35:8	168.4	35.	15.	0.	0.0	0.0	8	-	-	$0 \cdot 0$	- 0	0.		8.	$0 \cdot 0$	0.0	0	-0.	0

FIX POSITIONS FOR KELLLY

NOTICE - THE ASTERISKS (*) indICATE FIXES UNREPRESENTATIVE AND MOT USED FOR BEST TRACK PURPOSES.

BEST TRACK
 HARHING
 24 HOUR FORECAST

14. KnOtS
FIX PROPICAL STORM SUSAN
SATELLITE fixes

$\begin{aligned} & \text { FIX } \\ & \text { NO. } \end{aligned}$	TIME	$\text { Posi }{ }^{F}$	IX	ACCRY	DYORAK CODE	COMMENTS	SITE
	100600	11. 2 N	116.1E	PCN 4	T1.5/1.5	INIT 095	
* ${ }^{2}$	181600	112.8N	112.7E	PCN PCN 6		HIT OBS	PGTU
* 4	191800						PGTH
	118400 110600	11.4N		PCN PCN 6	T1.5/1.5+/5e.ereahrs	IMTI OBS ULCC FIX	PGTL
	110834	11.5N	116.6 E	PCN 5	T1.5/1.5	INIT OES	PGTL
8989	111028	11.ON	$115.4 E$	PCH PCH		INIT OBS	PGTW
10	111444	11.6M	113.7E	PCN 5			PGTLJ
11 $\times 12$	111600 111800	$12.2 N$ $11.8 N$	112.6E	$\mathrm{PCN} \mathrm{PCN}^{\text {PCN }}$	T2.5/2.5 /D1.5/22HRS		PGTu
13	112108	11.8 CN	112. 2 E				PGTL
14	112369	12.3 N	112.1E	PCH 5			PGTL
15	112309	12.3 N	$111.7 E$	PCN 5			PGTU
17	$1{ }^{1}$	$12.5 N$	119.7E				PGTU
18	120600	$12.8 N$	110.1E	PCN 6	T3.0.3.0-101.5/24HRS		PGTJ
19	128822	12.3N	109.2E	PCN 5	T2.0r2.0-100.5r24HRS		PGTJ
${ }^{2}$	$1{ }^{1} 1147$	12. 6 H	108. 3 E	${ }_{P C N}$			PGTL
22	121200	$12.4 N$	108.6E	PCN 6			Ropr
23	121609	13.8 CN	107.8E	PCN 6			PGTU
25	12.1817	$12.8 N$ 13	107.6E	${ }^{\mathrm{PCH}} 5$			RPTK
26	136026	13.6 N	107.1E	PCN 5			RPMK

NOTICE - THE ASTERISKS (*) INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES.


```
AVG FORECAST POSIT ERROR AVG RIGHT ANGLE ERROR
``` AVG INTENSITY MAGNI
AVG INTENSITY BIAS
NUMBER OF FORECASTS

DISTANCE TRAVELED BY TROPICAL CYCLONE IS 287. MA
AVERAGE SPEED OF TROPICAL CYCLONE IS
10. KNOTS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{SATELLITE FixEs} \\
\hline \[
\begin{aligned}
& \text { FIX } \\
& \text { NO. }
\end{aligned}
\] & \[
\underset{(2)}{\text { TIME }}
\] & FOSITION & ACCRY & DVORAK COD & & & COMMEN & TS & & SITE & & \\
\hline 1 & 141800 & 12.6N 155.8E & PCN 6 & T1.5/1.5 & & & INIT OBS & & & PGTW & & \\
\hline 2 & 144023 & 12. 3N 154. 1 E & \begin{tabular}{l}
PCN \\
\hline PCN \\
\hline
\end{tabular} & & & & INIT OBS & EXP LLCC & & PGTW & & \\
\hline 4 & 150300 & 11.6N 153. 15 & PCN 6 & T1. 5,1.5 & & & INIT O日S & & & PGTU & & \\
\hline 5 & 161600 & 7.1N \(150.4 E\) & PCN 6 & T1.0/1.0 & & & INIT OBS & & & PGTV & & \\
\hline & 161800 & 7.4N 150.2 E & PCN 6 & & & & & & & PGTW & & \\
\hline - 7 & 162100 & ?.4N 151.4E & PCN 6 & & & & & & & PGTU & & \\
\hline - 8 & 1781200 & 9.19N 148.6 EE & PCN 6 & & & & ULGC FIX & & & PGTU & & \\
\hline * 10 & 171243 & & \({ }_{P G C N} 6\) & & & & ULCC FIX & & & PGTW & & \\
\hline 11 & 17182 l & 9.6N 146.3 E & PCN 6 & T1.0,1.0- & 0.0/26HRS & & & & & & & \\
\hline \multicolumn{13}{|c|}{AIRCRAFT FIXES} \\
\hline \[
\begin{aligned}
& \text { FIX } \\
& \text { NO. }
\end{aligned}
\] & (2) & POSITION & FLT & 709MB MSBS & MAX-SFC-WND VEL/BRG/RNG & \[
\begin{aligned}
& \text { MAXX } \\
& \text { DIR }
\end{aligned}
\] & \[
T-L V L-U N D
\] & ACCRY NAY/MET & SHAPE & EYE ORIEMDIAM/TATION & OUT EVE YNA DP (C) & MSH. \\
\hline 1 & 170600 & 8.7N 148.5E & 1500F T & 998 & 2517030 & 230 & 817030 & 15 & & & +27 +27 +20 25 & 1 \\
\hline
\end{tabular}

NOTICE - THE ASTERISKS (*) INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR GEST TRACK PURPOSES.

5

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Fix } \\
& \text { No. }
\end{aligned}
\] & TIME & POSITXION & ACCRY & DVORAK CODE & COMMENTS & SITE \\
\hline 1 & 201200 & 3．9N 162．5E & PCN 6 & & & \\
\hline 2 & 201600 210609 & 4． 1 N \(162.4 E\) & \begin{tabular}{l}
PCN \\
\hline PCN \\
\hline
\end{tabular} & 71．0／1．0 & & PGTU \\
\hline 4 & 210300 & 4．9N 162．4E & PCN 6 & & ULCC FIX & PGTU \\
\hline 5 & 210600 & 5．2N 161． PE & PCN 6 & & & PGTW \\
\hline 7 & 22e300 & 7．7N 158．6E & \begin{tabular}{l}
PCN \\
\hline PCN \\
\hline
\end{tabular} & T2．0／2．0／D1．0／24HRS & & PGTL \\
\hline 8 & 220600 & 8．1N 158．1E & PCN 6 & & ULCC Fix & PGTU \\
\hline 19 & 220816 & 8．3N 157．6E & \({ }_{P C N} \mathrm{PCH}\) & & ULCC FIX & PGTL \\
\hline 11 & ट21243 & 8．7N 155．7E & PCH 5 & & & PGTU \\
\hline － 12 & \(22160{ }^{2}\) & 9．4N 154．6E & PCN 6 & T2．5／2．5 & INIT OBS & PGTW \\
\hline － 14 & 221800 & 9．1N 153.8 C & \begin{tabular}{l}
PCN \\
\hline PCN \\
\hline
\end{tabular} & & & PGTH \\
\hline 15 & こ己こeat & 9．5N 154．4E & PCN 4 & & & PGTL \\
\hline 16 & 2ᄅ2342 & 9．8N 153．8E & PCN 5 & T3．0／3．0／D1．0／24HRS & & PGTU \\
\hline 18 & 23036e & 9．6N \(153.8 E\) & PCN 6 & & & PGTW \\
\hline 19 & 230754 & 9．8N 15i．4E & \(\mathrm{PCN}^{4}\) & & & PGTU \\
\hline 29 & 230902 & 10．1N 151．2E & PCH 4 & & & PGTW \\
\hline 21 & 231223 & 10．2N 150.6 E & \(P \mathrm{PN} 3\) & & & PGTW \\
\hline 22 & 231609 & 10．SN 149.6 E & PCN 4 & T4．0／4．0／D1．5／24HRS & & PGTW \\
\hline 24 & 232835 & 10．7N 148．7E & PCN 3 & & & PGTU \\
\hline 25 & 2323こ己 & 19．SN 147： 5 E & PCN 5 & & & PGTW \\
\hline 26 & 246300 & \(11.4 N 147\) ． \(2 E\) & PCN 4 & T5．0／5．0／DC．0／24HRS & & PGTW \\
\hline & 240551 & 11．SM 145.98 & PCN 3 & & & PGTN \\
\hline 29 & 240551 & 11．7M 145.3 E & PCN 3 & T4．0／4．0 & INIT 085 & RODN \\
\hline 36 & 240915 & 1\％．8N 145.15 & \(\mathrm{PCN}_{4}\) & & & PGTU \\
\hline 31 & 241203 & 12．0N 144．0E & PCN 4 & & & PGTW \\
\hline \(3{ }^{3}\) & 241600 & 12．AN 142．7E & \(\mathrm{PCN}^{\mathrm{PCN}} 4\) & & & PGTu \\
\hline － 34 & 241836 & 13．1N 142．1E & \({ }_{P C N}{ }_{4}\) & T5．0／5．0／01．0，26HRS & & PGTL \\
\hline 35 & 242013 & 12．3M 141．3E & PCN 3 & & & PGTLS \\
\hline 36 & 242117 & 12． 4 N 141．0E & PCN 3 & & & PGTU \\
\hline 38 & 250308 & 13．1N 139．7E & \(P \mathrm{PCN}\) ？ & TS．5／5．5／D0．5／2IHRS & & PGTLJ \\
\hline 39 & 250539 & 13．7N 138．4E & PCN & & & PGTW \\
\hline 40 & 259900 & 13．6N \(138.0 E\) & PCN 2 & & & PGTW \\
\hline 412 & 256955 & 14．9N 138.0 Em & PGN & & & PGTJ \\
\hline 43 & 251323 & 14．3M 136．9E & PCM 2 & & & PGTJ \\
\hline 45 & 251600 & 14．7N 136．1E & PCN 2 & T6．5／6．5／Di．5／22HR5 & & PGTW \\
\hline 45 & 251808 & 14．9N 135.6 Cl & PCN
PCN & & & PGTU \\
\hline 47 & 251823 & 14．8N 135.6 E & PCN 2 & & & PGTU \\
\hline 48 & 252109 & 15．2N 135．0E & PCN 2 & & & PGTU \\
\hline 49 & 252233 & 15．2N 134.8 SE & PCN
PCM & & & PGTW \\
\hline 51 & 260923 & 15．5N 133.5 SE & PCN 1 & T7．017．8 & INIT OBS & RODN \\
\hline 5 & 269623 & \(15.5 N\)
\(15.8 N\)
133.35 & PCN 1 & T7．0／7．0／D1．5／24HRS & & PGTW \\
\hline 54 & 269798 & 15．9N 132．6E & PCN 1 & & & PGTU \\
\hline 55 & 260900 & 16．0N 132．2E & PCN 2 & & & PGTW \\
\hline 57 & 260931 & 16.0 N
16.0 N
\(131.9 E\) & PCN
PCN
e & & & PGTU \\
\hline 58 & 261394 & 16．ON 131.6 E & \(P \mathrm{PN}\) 2 & & & PGTW \\
\hline 69 & 261690 & 16．2N 131.3 E & PCN
PCN & T7．0／7．0－／00．5／24HRS & & PGTW \\
\hline 61 & 262190 & 16．8N 138.8 E & PCN 2 & & & RODN \\
\hline 62 & 262106 & 16． 7 N 130.8 EE & PCN 2 & & & PGTU \\
\hline 63 & 26ट112 & 16．7N 130.8 BE & PCN 2 & & & RODN \\
\hline 65 & 262209 & 17．8N 130．7E & PCN 2 & & & \\
\hline 65 & 2760606 & 17．3N 130．4E & PCN 2 & & & PGTU \\
\hline 68 & 270144 & 17．AN 139．SE & \(\mathrm{PCN}{ }^{\text {PCN }}\) & T7．0／7．0－／50．0／25HRS & & RODN \\
\hline 69 & 270300 & 17．6H 130．1E & PCH \({ }^{\text {a }}\) & & EYE DIA SNM & PGTW \\
\hline 78 & 270656 & 18．0N \(129.8 E\) & PCN 1 & & & PGTU \\
\hline 71 & 279352 & 18．4N 129．5E & PCN 2 & & & PGTW \\
\hline 73 & 271209 & 13．8N 129．SE & PCN 2 & & & PGTW \\
\hline 74 & 271425 & 18．9N 129．4E & PCN 2 & & & PGTU \\
\hline
\end{tabular}

TYPHOON LYARREN
BEST TRACK DATA

average speed of tropical cyclone is

5. KNOTS

FIX POSITIONS FOON CYAREN NONE NO. 26
SATELLITE FIXES

WARNING

 AVG FOREGAST POSIT ERROR
AVG RIGHTANGLE ERRORR
AVG INTENSITYY MAGITUDE ERROR
AVG INTENSITY BIAS
NUMEERTOF FORECASTS
DISTANCE TRAVELED BY TROPICAL CYCLONE IS AVERAGE SPEED OF TROPICAL CYCLOME IS

TYPHOON AGNES
FIX POSITIONS FOR CYCLONE NO. 27
SATELLITE FIXES

\begin{tabular}{|c|}
\hline \multicolumn{24}{|c|}{AIRCRAFT FIXES} \\
\hline \[
\begin{gathered}
\text { FIX } \\
\text { NO. }
\end{gathered}
\] & \[
\operatorname{TIME}_{(Z)}
\] & \multicolumn{2}{|l|}{POSITXION} & FLT & \[
\begin{aligned}
& \text { TOOMB } \\
& \hline \text { HGT }
\end{aligned}
\] & MSL & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { MAX-SFC-WND } \\
& \text { EL }-B R G / R N G
\end{aligned}
\]} & \multicolumn{4}{|l|}{MAX-FLT-LVL-Und DIR/VEL/BRG/RNG} & \multicolumn{2}{|l|}{ACCRY Nav/MET} & \[
\begin{aligned}
& \text { EVE } \\
& \text { SHAPE }
\end{aligned}
\] & \multicolumn{3}{|l|}{EYE ORIENDIAM/TATION} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { EYE TEMP }(C) \\
& \text { OUT } \mathrm{IN}, \mathrm{DP} / \mathrm{SS} \text {, }
\end{aligned}
\]} & MSN \\
\hline & 980735 & 14.4N & 153.6E & 850 ME & & & 20 & 240 & 90 & 280 & & & 60 & & & & & & & & & & \\
\hline 3 & 982142 & 13.9 N
13.8 N & 153.6E & \(1500 \% T\)
\(1500 F T\) & & 1000
999 & 49 & 320 & \(4{ }^{4} 8\) & 950 & 48 & 320
350 & 49 & \(1{ }^{8}\) & 10 & & & & & +21
+24
+2 & +20 + & +16
+23 & \(\frac{1}{2}\) \\
\hline 4 & 090555 & 14.8 N & 153.7E & 15 & 3070 & 999 & 45 & 350 & 48 & 260 & & 350 & 108 & 12 & \({ }_{10}\) & & & & & +24 & +25 & +23 & \({ }^{2}\) \\
\hline 5 & 990826 & 14.EN & 153.8E & 700 mb & 3671 & 998 & & & & 159 & & & 103 & \(1{ }^{8}\) & 10 & & & & & & & & 4 \\
\hline 7 & 092162 & 14.3 N & 153.9E & 700MB & 3037 & 990 & 50 & 268 & 38 & 340 & & 268 & 33 & 8 & 4 & & & & & +21 & \(+25\) & & 5 \\
\hline 8 & 100601 & 14.3 M & 153.7E & 1500 MB & & 990 & 59 & 364 & \(3{ }^{39}\) & 120
308 & & 369 & 14 & 8 & 1 & & & & & +26 & \(+{ }^{+1}\) & +26 & 5 \\
\hline 9 & 100835 & 14.3 H & 153.7E & 700 MB & 3038 & & & & & 180 & & & 30 & 10 & \(\frac{1}{2}\) & & & & & +18
+19 & +23 + & +19 & \(?\) \\
\hline 10 & 192042 & 14.3N & \(153.1 E\) & 700 mb & 3046 & & 50 & 270 & 20 & 268 & & & 20 & 15 & 2 & & & & & \(+13\) & \(+1\). & \(+\) & \\
\hline 12 & 110832 & \(14.6 N\)
\(14.3 N\) & \(152.9 E\) & 700 MB & 2964
3019 & 986 & 100 & & 40 & -880 & & & 10 & 10 & 2 & CIRCULAR & 15 & & & +12 & \(+17\) & + \({ }_{+}^{\text {g }}\) & \(\stackrel{8}{8}\) \\
\hline 13 & 111836 & 14.2 H & \(151.6 E\) & 70948 & 3021 & 992 & & & & 1988 & & & 149
60 & \(1{ }^{4}\) & 5 & & & & & +17 & +19 & \(+7\) & 10 \\
\hline 14 & 112050 & 13.4N & 149.9E & 700 MR & 3019 & & 70 & & 4 & 080 & & & 58 & 18 & \(\stackrel{3}{2}\) & & & & & \(+12\) & \(+19\) & +18 & 10 \\
\hline 16 & 121313 & 13.4N & 149. 14 E & 700 HE & 3069
2923 & 991 & & 030 & 30 & 148 & & & 126 & 6 & 2 & GIRCULAR & 17 & & & +13 & \(+1 \div\) & +9 & 1 \\
\hline 17 & 121641 & 13.0 N & 144.6 F & 700 MB & 2859 & 973 & & & & -880 & & & 150
45 & 5 & \({ }_{2}^{1}\) & ELLIPTICAL & 10 & 8 & 070 & \(+11\) & \(+14\) & \({ }_{+}+\) & \(1{ }^{2}\) \\
\hline 18 & 122300 & 12.8 N & \(1.42 .5 E\) & 70 ¢M & 2841 & 969 & & & 10 & 090 & & & 90 & 12 & 1 & COMCENTRIC & 10 & & & +16
+14 & \(+20\) & \(\pm{ }_{+1}\) & \begin{tabular}{l}
17 \\
15 \\
\hline 15
\end{tabular} \\
\hline 20 & 136741
131019 & & 139.7E & 700 MB & 2817 & 967 & 80 & 280 & 10 & 930 & & & 30 & 6 & 2 & CONCENTRIC & & & & +12 & +1 + & \(+13\) & 15 \\
\hline & & 12.5 N & 138.9E & 760 MB & 279 & 966 & & & & & 90 & 360 & 20 & 6 & e & circular & 15 & & & +11 + & +15 + & \(+12\) & 14 \\
\hline
\end{tabular}

nOTICE - THE ASTERISKS (*) INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES.
\begin{tabular}{|c|}
\hline & & TR & & & & ARNING & & & & & & & & & 48 & HOUR F & FORE & & & 3 & R & & \\
\hline MO/DA/HR & & & WIND & & IT & & & \[
\begin{aligned}
& \text { RRORS } \\
& \text { THIND }
\end{aligned}
\] & & 515 & & D D5T & T WIND & & SIT & & & WIND & & It & & DST & WIND \\
\hline 1)14002 & & 156 & 20 & & & 0. & & & & 0.0 & & & \({ }^{\text {a }}\) & & - 0 & & & 0. & & - 0 & & & \\
\hline \(1: 14962\) & & 155.4 & 25 & 5.6 & 155.5 & 25. & 8 & \(\theta\) & & 152. 3 & 35 & 176. & - & & 148.5 & 55 & 283 & \(-10\) & & & & & \\
\hline 1114122 & & & 25 & & & 30 & 24 & 5 & & 149.3 & 50 & 78. & 5. & & 144.6 & 60 & 152. & -10 & 8.9 & 139.9 & 75. & 2]7. & - \\
\hline 1114182
115002 & 9.7 & 153.1 & 25 & 6.9 & 152.6 & 48 & 32 & 15 & & 148.3 & 55 & 68. & 0 & 10.0 & 143.8 & 65 & 148. & -10. & & 139.1 & 80. & 200. & 5. \\
\hline 1115062 & & 149.9 & 35 & & 150 & 35 & 69 & 0. & 10.4 & 148.5 & 55 & 12 l & \(-5\) & 11. & 141.8 & 65 & 293. & -29 & & 138.8 & & & \\
\hline \(111512 z\) & & 148.2 & 45 & & 148 & 35 & 59 & -10 & 11 & & 60 & 80 & -16 & 12.5 & 137 & 75 & 63 & 0 & & 31.8 & & 100 & , \\
\hline 1115182 & 8 & 147.2 & 55 & 9.1 & 147.3 & 40. & 42 & -15 & 11.6 & 142.0 & 65 & 94 & -10 & 13.9 & 136. & 80 & 118 & 25 & 16. & 130.9 & 95 & 146 & 8 \\
\hline 1116002 & & 146.0 & 60 & & 145.9 & 69 & & O & 11.3 & 140.3 & 75 & & -5. & & 134. & 95. & & -15 & 16. & 130.3 & & 139. & 5. \\
\hline 1116062 & & 144.6 & 65 & 9.5 & 144.6 & 60 & 6 & -5 & 11. & 139 & 75 & 54 & \(-10\) & 13. & 134.6 & 95. & 48. & -15 & 16.4 & 130.1 & 185. & 143. & 15. \\
\hline 1116122 & & 142.8 & 75 & & 142.9 & & & 12 & 11 & 136.8 & 75 & 30 & -20 & & 132.3
130.8 & 95. & 123. & 5 & 18.1 & 128 & 185. & 247 & 5. \\
\hline 111700 & 10. & 139.9 & 89 & 10.5 & 149.3 & 70 & 2 & 15 & \(1{ }^{1}\) ¢ \({ }^{\text {c }}\) & 135.6 & 9 & 54 & -39 & 15 & 131. & 190 & 15 & 20. & 19.5 & 129 & 10 & З21 & \\
\hline 1117862 & 10.9 & 138.5 & 85 & 11.8 & 138.6 & 75 & & 18 & 13.7 & 133.4 & 95 & 38. & -15 & 17 & 130 & 105 & 115 & 15. & 21.9 & 129 & 116. & 289. & 10. \\
\hline 1117122 & 11.5 & 137.1 & 95 & 11.5 & 137.3 & 85 & & 18 & 15.0 & 132 & 105 & 67 & 29 & 19 & 131 & 115. & 103. & 15. & 23.9 & 133 & 110. & 257 & \(2{ }^{2}\) \\
\hline 1118062 & 12. & 134 & 110 & 12 & 134 & 110 & - & & & 130 & 138 & 87 & 5 & & 130 & 130 & 185. & 25. & 23.7 & 133. & 120 & 376 & 45 \\
\hline 1118062 & 13.2 & 133 & 110 & 13.3 & - & 115 & 19. & 5. & 17 & 130 & 136 & 115. & 40 & 21 & 130. & 130. & 2 ¢6. & 30. & 24.2 & 134 & 115 & 483. & 45. \\
\hline 1118122 & & 133 & 100 & 13.9 & 1 & 115 & 6. & & 17.5 & 31.3 & 130 & 95. & & 20 & & 130 & 299. & 48. & & - & 15 & & 55. \\
\hline 1118182 & 15.8 & 132.7 & 96 & 15.8 & 132 & 129 & O & 30 & 18.8 & 132.8 & 130 & 67 & 26 & & 33. & & 335. & 45. & & 0.0 & 9 & -0. & \\
\hline 1119662 & 17. \({ }_{1} 17\) & 132. 4 & 89 & 17.9 & 132. \({ }^{1}\) & 85 & 6 & 15 & 2a. 1 & 133.1 & 78 & & & 25 & 135 & 85 & 434 & -5 & & & & -8 & \(\theta\) Q: \\
\hline 1119122 & 18.6 & 132 & 100 & 18.6 & 132.4 & 95 & & , & 2 & 134.6 & 96 & 14 & \({ }^{8}\). & 30. & 140.7 & 80 & 336 & -0. & \({ }_{0}\). 0 & & 0 & - & \\
\hline 1119182. & 19.7 & 132 & 110 & 19.9 & 132.7 & 180. & 12. & -18 & 25.8 & 135.3 & 98 & 171 & 15. & 0.0 & 0.0 & O & - 0 & 0 & 0.0 & 0.0 & 8 & -0. & \% \\
\hline 1120002 & 20.8 & 133.3 & 105 & 20.8 & 133. & 105 & 11. & 0. & 25.6 & 135.8 & 95 & 249 & 20. & 0.0 & 0.6 & 0 & -8 & 0 & 0.0 & 0.0 & . & -0. & \\
\hline 1120062 & 22.8 & 134 & 109 & 22. & 134 & 108 & 13. & Q. & 27. & 142.3 & 85 & 48. & 15. & 0.0 & 0.0 & 0 & -0 & O & 0.0 & 0.0 & 0 & -9. & \\
\hline \(112012 z\) & 23. & 136.0 & 90 & 23.6 & 136 & 95 & 12. & 5 & 29.7 & 144.7 & 70 & 165. & 18 & 0.0 & 0.0 & 0 & - 0 & \(\bigcirc\) & 0.8 & 0.8 & . & -6. & \\
\hline 1120182 & & & & & 137.7 & 80 & 33 & & 0.0 & \(0 \cdot 0\) & & & & 0.0 & 0.0 & & -0. & & 0.6 & 0.8 & 8 & -0. & \\
\hline \[
\begin{aligned}
& 1121002 \\
& 1121062
\end{aligned}
\] & 25.8 & \[
\begin{aligned}
& 140.4 \\
& 143.0
\end{aligned}
\] & 75 & 26. & 140.5
143.9 & 88 & 13
68 & & 0.0 & 0.6 & & -0 & & 0.8 & 0.8 & & -0. & 0 & 9.8 & O. 0 & \({ }_{8}^{8}\) & -0. & 9 \\
\hline 112112z & 27. 1 & 145.7 & 68 & 27.2 & 145.9 & 60. & 64. & \(\bigcirc\) & \(0 \cdot 0\) & 0.0 & 0 & -0. & & 0.8 & 0.0 & & - 0 & & 0.0 & 0.0 & 0 & -0. & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & URNG \({ }^{\text {ALL }}\) & FORECASTS 24-HR & 48-HR & 22-HR & TYPM & \(2{ }^{2}\) & E OVER & 35 KTS \\
\hline AVG FORECAST POSIT ERROR & 20. & 94. & 185 & 265. & 20. & 94 & 185. & 265. \\
\hline AVG RIGHT ANGLE ERROR & 13. & 61. & 93. & 131. & 14. & 61 & 93. & 131. \\
\hline AVG INTENSITY MAGNITUDE ERROR & -1. & 16. & 17. & 22. & -8. & \({ }^{16}\) & 17. & \(2{ }_{8}\) \\
\hline NUMBER OF FORECASTS & 30. & 26. & \(2{ }^{4}\) & 18. & \({ }_{26}{ }^{-1}\) & \(2{ }^{2}\) & e2. & 18. \\
\hline
\end{tabular}

TEST TROMCK DOYLE

T5.0/5.0/01.0/24HRS
T5.5/5.5-/D0.5/24HRS
EVE FIX FIX SO PCT EYEUALL

AIRCRAFT FIXES

NOTICE - THE ASTERISKS (*) INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES.

\section*{2. NORTH INDIAN OCEAN CYCLONE DATA}

IX POSITIONS FOR CYYCLONE NO. 4
SATELLITE FIXES

\section*{APPENDIX I}

\section*{CONTRACTIONS}
\begin{tabular}{|c|c|c|c|}
\hline ACCRY & Accuracy & FI & Forecast Intensity (Dvorak) \\
\hline ACFT & Aircraft & FLT & Flight \\
\hline ADP & Automated Data Processing & FNOC & Fleet Numerical Oceanography Center \\
\hline AFGWC & Air Force Global Weather Central & FT & Feet \\
\hline AIREP & Aircraft Weather Report (s) (Commercial and Military) & GMT & Greenwich Mean Time \\
\hline ANT & Antenna & GOES & Geostationary Operational Environmental Satellite \\
\hline AOR & Area of Responsibility & HATTRACK & Hurricane and Typhoon Tracking \\
\hline APRNT & Apparent & & (Steering) Program \\
\hline APT & Automatic Picture Transmission & HGT & Height \\
\hline ARWO & Aerial Reconnaissance Weather Officer & HPAC & Mean of XTRP and CLIM Techniques (Half Persistence and Climatology) \\
\hline ATT & Attenuation & HR (s) & Hour (s) \\
\hline AVG & Average & HVY & Heavy \\
\hline AWN & Automated Weather Network & ICAO & International Civil Aviation Organization \\
\hline BPAC & Blended Persistence and Climatology & INIT & Initial \\
\hline BRG & Bearing & INJAH & North Indian Ocean Component \\
\hline CDO & Central Dense Overcast & & of TYAN \\
\hline CI & Cirriform Cloud or Cirrus also Current Intensity (Dvorak) & INST & Instruction \\
\hline & & IR & Infrared \\
\hline USCINCPAC & ```
Commander-in-Chief Pacific
AF - Air Force, FLT - Fleet (Navy)
``` & KM & Kilometer (s) \\
\hline CLD & cloud & KT & Knot (s) \\
\hline CLIM & Climatology & LLCC & Low-level Circulation Center \\
\hline CLSD & Closed & LVI & Level \\
\hline CM & Centimeter & M & Meter (s) \\
\hline CNTR & Center & M/S & Meter (s) per Second \\
\hline CPA & Closest Point of Approach & MAX & Maximum \\
\hline CSC & Cloud System Center & MB & Millibar (s) \\
\hline CXCLOPS & Tropical Cyclone Steering Program (HATTRACK and MOHATT) & MET & Meteorological \\
\hline & & MIN & Minimum \\
\hline DEG & Degree (s) & MOHATT & Modified HATTRACK \\
\hline DIAM & Diameter & MOVG & Moving \\
\hline DIR & Direction & MSLP & Minimum Sea Level Pressure \\
\hline DMSP & Defense Meteorological Satellite Program & MSN & Mission \\
\hline DST & Distance & NAV & Navigational \\
\hline EL & Elongated & NEDN & Naval Environmental Data Network \\
\hline ELEV & Elevation & NEDS & Naval Environmental Display Station \\
\hline EXP & Exposed & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline NEPRF & Naval Environmental Prediction Research Facility & SST & Sea Surface Temperature \\
\hline & & ST & Subtropical \\
\hline NESS & National Environmental Satellite Service & STR & Subtropical Ridge \\
\hline NESDIS & National Environmental Satellite, Data, and Information Service & STY & Super Typhoon \\
\hline NET & Near Equatorial Trough & TAPT & Typhoon Acceleration Prediction Technique \\
\hline NM & Nautical Mile(s) & TC & Tropical Cyclone \\
\hline N/O & Not Observed & tcarc & Tropical Cyclone Aircraft Reconnaissance Coordinator \\
\hline NOAA & National Oceanic and Atmospheric Administration & TCFA & Tropical Cyclone Formation Alert \\
\hline noce & Naval Oceanography Command Center & TCM & Tropical Cyclone Model \\
\hline NOGAPS & \begin{tabular}{l}
Navy Operational Global \\
Atmospheric Prediction System
\end{tabular} & TD & Tropical Depression \\
\hline & & TDO & Typhoon Duty Officer \\
\hline NWOC & Naval Western Oceanography Center & TIROS & Television Infrared Observation \\
\hline NR & Number & & Satellite \\
\hline NRL & Naval Research Laboratory & mpac & Extrapolation and Climatology blend \\
\hline NTCM & Nested Tropical Cyclone Model & TS & Tropical Storm \\
\hline OBS & Observations & & \\
\hline отсм & One-Way (Interactive) Tropical Cyclone Model & TY
TYAN & Typhoon
Typhoon Analog Program \\
\hline PACOM & Pacific Command & tYFN & Western North Pacific Component (Revised) of TYAN \\
\hline PCN & Position Code Number & TUTT & Tropical Upper-Tropospheric \\
\hline PSBL & Possible & & Trough \\
\hline PTLY & Partly & ULAC & Upper-level Anticyclone \\
\hline QUAD & Quadrant & ULCC & Upper-level Circulation Center \\
\hline RADOB & Radar Observations & VEL & Velocity \\
\hline RECON & Reconnaissance & VIS & visual \\
\hline RNG & Range & VMNT & Vector Movement (ddff) \\
\hline RT & Right & WESTPAC & Western (North) Pacific \\
\hline SAT & Satellite & wmo & World Meteorological Organization \\
\hline SFC & Surface & WND & Wind \\
\hline SLP & Sea Level Pressure & WRNG (s) & Warning (s) \\
\hline SPOL & Spiral Overlay & WRS & Weather Reconnaissance Squadron \\
\hline SRP & Selective Reconnaissance Program & XTRP & Extrapolation \\
\hline STNRY & Stationary & 2 & \begin{tabular}{l}
2ulu Time \\
(Greenwich Mean Time)
\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIX II}

\section*{DEFINITIONS}

BEST TRACK - A subjectively smoothed path, versus a precise and very erratic fix-to-fix path, used to represent tropical cyclone movement.

CENTER - The vertical axis or core of a tropical cyclone. Usually determined by wind, temperature, and/or pressure distribution.

CYCLONE - A closed atmospheric circulation rotating about an area of low pressure (counterclockwise in the Northern Hemisphere).

EPHEMERIS - Position of a body (satellite) on space as a function of time; used for gridding satellite imagery. Since ephemeris gridding is based solely on the predicted position of the satellite, it is susceptible to errors from vehicle pitch, orbital eccentricity, and the oblateness of the earth.

EXPLOSIVE DEEPENING - A decrease in the minimum sea level pressure of a tropical cyclone of \(2.5 \mathrm{mb} / \mathrm{hr}\) for 12 hrs or \(5.0 \mathrm{mb} / \mathrm{hr}\) for six hrs (ATR 1971).

EXTRATROPICAL - A term used in warnings and tropical sumaries to indicate that a cyclone has lost its "tropical" characteristics. The term implies both poleward displacement from the tropics and the conversion of the cyclone's primary energy sources from release of latent heat of condensation to baroclinic processes. The term carries no implications as to strength or size.

EYE - A term used to describe the central area of a tropical cyclone when it is more than half surrounded by wall cloud.

FUJIWHARA EFFECT - An interaction in which tropical cyclones within about 700 nm \((1296 \mathrm{~km})\) of each other begin to rotate about one another. When intense tropical cyclones are within about 400 nm ( 741 km ) of each other, they may also begin to move closer to each other.

MAXIMUM SUSTAINED WIND - Highest surface wind speed averaged over a oneminute period of time. Peak gusts over water average 20 to 25 percent higher than sustained winds.

RAPID DEEPENING - A decrease in the minimum sea level pressure of a tropical cyclone of \(1.25 \mathrm{mb} / \mathrm{hr}\) for 24 hrs (ATR 1971).

RECURVATURE - The turning of a tropical cyclone from an initial path toward the west or northwest to a path toward the northeast.

RIGHT ANGLE ERROR - The distance described by a perpendicular line from the best track to a forecast position. (See figure 4-1).

SIGNIFICANT TROPICAL CYCLONE - A tropical cyclone becomes "significant" with the issuance of the first numbered warning by the responsible warning agency.

SUPER TYPHOON/HURRICANE - A typhoon/ hurricane in which the maximum sustained surface wind (one-minute mean) is 130 kt ( \(67 \mathrm{~m} / \mathrm{s}\) ) or greater.

TROPICAL CYCLONE - A non-frontal low pressure system of synoptic scale developing over tropical or subtropical waters and having a definite organized circulation.

TROPICAL CYCLONE AIRCRAFT RECONNAISSANCE COORDINATOR - A USCINCPACAF representative designated to levy tropical cyclone aircraft weather reconnaissance requirements on reconnaissance units within a designated area of the PACOM and to function as coordinator between USCINCPACAF, aircraft weather reconnaissance units, and the appropriate typhoon/ hurricane warning center.

TROPICAL DEPRESSION - A tropical cyclone in which the maximum sustained surface wind (one-minute mean) is \(33 \mathrm{kt}(17 \mathrm{~m} / \mathrm{s})\) or less.

TROPICAL DISTURBANCE - A discrete system of apparently organized convection--generally 100 to 300 nm ( 185 to 556 km ) in diameter-originating in the tropics or subtropics, having a non-frontal migratory character, and having maintained its identity for 24 hours or more. It may or may not be associated with a detectable perturbation of the wind field. As such, it is the basic generic designation which, in successive stages of intensification, may be classified as a tropical depression, tropical storm or typhoon (hurricane).

TROPICAI STORM - A tropical cyclone with maximum sustained surface winds (one-minute mean) in the range of 34 to 63 kt ( 17 to 32 \(\mathrm{m} / \mathrm{s}\) ) inclusive.

TROPICAL UPPER-TROPOSPHERIC TROUGH (TUTT) "A dominant climatological system, and a daily synoptic feature, of the summer season over the tropical North Atlantic, North Pacific and South Pacific Oceans," from Sadler, J.C., Feb. 1976: Tropical Cyclone Initiation by the Tropical-Upper Tropospheric Trough (NAVENVPREDRSCHFAC Technical Paper No. 2-76).

TYPHOON/HURRICANE - A tropical cyclone in which the maximum sustained surface wind (one-minute mean) is \(64 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})\) or greater. West of 180 degrees longitude they are called typhoons and east of 180 degrees they are called hurricanes. Foreign governments use these or other terms for tropical cyclones and may apply different intensity criteria.

VECTOR ERROR - The distance described by a straight line from the forecast position to the position at verification time as found on the best track. (See Figure 4-1).

WALL CLOUD - An organized band of cumuliform clouds immediately surrounding the central area of a tropical cyclone. The wall cloud may entirely enclose or only partially surround the center.

\section*{APPENDIX III}

NAMES FOR TROPICAL CYCLONES


\section*{APPENDIX IV}

REFERENCES

Atkinson, G. D., and C. R. Holliday, 1977: Tropical Cyclone Minimum Sea Level Pressure - Maximum Sustained Wind Relationship for the Western North Pacific. Monthly Weather Review, Vol. 105, No. 4, pp. 42I-427.

Dunnavan, G. M., 1981: Forecasting Intense Tropical Cyclones Using 700 MB Equivalent Potential Temperature and Central Sea Level Pressure. NAVOCEANCOMCEN/JTWC TECH NOTE: JTWC 81-1, 12 pp.

Dvorak, V. F., 1973: A Technique for the Analysis and Forecasting of Tropical Cyclone Intensities from Satellite Pictures. NOAA Technical Memorandum NESS 45, 19 pp. (Note: Updated info in May 1982 Training Notes and Appendix: Tropical Cyclone Intensity Analysis and Forecasting from Satellite Visible or Enhanced Infrared Imagery).

Holland, G. J., 1980: An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, Vol 108, No. 8, pp. 1212-1 218.

Sadler, J. C., 1976: Tropical Cyclone Initiation by the Tropical Upper-Tropospheric Trough. NAVENVPREDRSCHFAC Technical Paper No. 2-76, 103 pp .

Sikora, C. R., 1976: An Investigation of Equivalent Potential Temperature as a Measure of Tropical Cyclone Intensity. FLEWEACEN TECH NOTE: JTWC 76-3, 12 pp .

Weir, R. C., 1982: Predicting the Acceleration of Northward-moving Tropical Cyclones Using UpperTropospheric Winds. NAVOCEANCOMCEN/JTWC TECH NOTE: NOCC/JTWC 82-2.

\title{
APPENDIX V \\ PAST ANNUAL TROPICAL CYCLONE REPORTS
}

Copies of the past Annual Tropical Cyclone/Typhoon Reports can be obtained through:

\author{
National Technical Information Service 5285 Port Royal Road \\ Springfield, Virginia 22161
}

Refer to the following acquisition numbers when ordering:

\section*{YEAR}

1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983

ACQUISITION NUMBER
AD 786147
AD 786148
AD 786149
AD 786128
AD 786208
AD 786209
AD 786210
AD 785891
AD 785344
AD 785251
AD 785178
AD 785252
AD 768333
AD 768334
AD 777093
AD 010271
AD A023601
AD A038484
AD A055512
AD A070904
AD A082071
AD A094668
AD All2002
AD A124860
AD Al37836

\section*{DISTRIBUTION}

AFGWC (2)
AF WEACEN TAIWAN
HQ AWS/DOR (2)
HQ AWS/DNT (1)
AWS TECHNICAL LIBRARY (2)

BUR OF MET, BRISBANE
(3)

BUR OF MET, DARWIN (2)
buR of met, melbourne (2)
BUR OF MET, PERTH (1)
BUR OF PLANNING, GUAM (2)
CATHOLIC UNIVERSITY OF AMERICA (1)
CENTRAL METEOROLOGICAL OFFICE, SEOUL
CENWEABUR TAIWAN (3)
CINCPACFLT (3)
CIUDAD UNIV, MEXICO (1)
CIVIL DEFENSE, GUAM (5)
CIVIL DEFENSE, SAIPAN (1)
CNO (OP-952) WASHINGTON DC (1)
COLORADO STATE UNIV (3)
COLORADO STATE UNIV (LIBRARY) (1)
COMFAIRECONRON ONE (1)
COMNAVAIRSYSCOM (1)
COMNAVFACENGCOMPACDIV (1)
COMNAVMARIANAS (2)
COMNAVOCEANCOM (2)
COMNAVSURFGRU WESTPAC (2)
COMNAVSURFPAC (3)
COMPATRECONFORSEVENTHFLT (1)
COMPHIBGRU ONE (1)
COMSC (1)
COMSEVENTHFLT (1)
COMSUBGRU SEVEN (1)
COMTHIRDFLT (1)
COMUSNAVPHIL (1)
CONGRESSIONAL INFORMATION SERVICE, MD (1)
defense communications agency, guam (1)
defense documentation center (12)
DEPT OF AIR FORCE
(1)

DEPT OF COMMERCE (2)
DET 2, 1WW (1)
DET 4, lWW (2)
DET 4,
DET 5, 1WW (2)
DET 8, lWW (2)
DET 10, 30WS (1)
DET 15, 30WS (1)
DET 17, 1WW (1)
DET 18, 30WS (1)
ENVIR SVCS DIV, PENTAGON (1)
FAA, GUAM (5)
FLENUMOCEANCEN MONTEREY (2)
Florida state univ, tallahassee (2)
GEOLOGICAL SURVEY, GUAM : (1)
GFDL, PRINCETON, N.J. (1)
GUAM PUBLIC LIBRARY (5)
HUGHES AIRCRAFT COMPANY (1)
HQ USAF/XOORZ (1)
INDIA MET DEPT (3)
INST OF PHYSICS, TAIWAN (2)
INSTITUO DE GEOFISICA, MEXICO
Japan met agency (3)
JASDF, TOKYO (2)
KOTSCH, W.J., RADM (RET) (2)
LOS ANGELES PUBLIC LIBRARY (1)
\(\mathrm{MAC} / \mathrm{HO}\), IL (1)
MARINERS WEATHER LOG (2)
MASS INST OF TECH (1)
MCAS FUTENMA (2)
MCAS IWAKUNI (3)
MCAS KANEOHE BAY (1)
MET DEPT BANGKOK (4)
MET SOC OF NEW SOUTH WALES, AUST (2)
MET RESEARCH INST LIBRARY, TOKYO (1)
MICRONESIAN RESEARCH CENTER UOG, GUAM
NAT CLIM DATA CNTR, NC (2)
nat wea association (4)
NATIONAL WEATHER SERVICE, HONOLULU
naval civil eng lab, port hueneme, ca (1)
NAVEASTOCEANCEN, NORFOLK (1)
NAVHISTCEN (1)
NAVOCEANCOMCEN, ROTA (1)
NAVOCEANCOMFAC, JACKSONVILLE (1)
NAVOCEANCOMFAC, YOKOSUKA (2)
NAVPOLAROCEANCEN, SUITLAND (2)
NAVWESTOCEANCEN, PEARL HARBOR (2)
NEPRF (3)
NOAA, NHC (2)
NOAA/GUAM (2)
NOAA/AOML, HRD, MIAMI FL (1)
NOAA/HYDROMETEOROLOGY BR SILVER SPRINGS, MD
NOAA/ACQUISITION SECTION ROCKVILL, MD (1)
NOAA/NESDIS, REDWOOD CITY, CA (1)
NOAB/PMEL SEATTLE, WA (1)
NOCD, AGANA: (3)
NOCD, ALAMEDA (1)
NOCD, ASHEVILLE (2)
NOCD, ATSUGI (1)
NOCD, BARBERS POINT (1)
NOCD, DIEGO GARCIA
NOCD, KADENA (1)
NOCD, MISAWA (2)
NOCD, MONTEREY (1)
NPGS DEPT OF MET (3)
NPGS LIBRARY (1)
OCEAN ROUTES INC, CA (2)
oceano services INC, CA (1)
OFFICE OF THE NAVAL DEPUTY, NOAA (1)
OKINAWA MET OBS (I)
OLG/HQ AWS/CARCAH CORAL GABLES (1)
PACAF/DOW (2)
pactric stars and stripes (1)
PAGASA RP (5)
PENNSYLVANIA STATE UNIVERSITY (1)
ROYAL OBSERVATORY HONG KONG (5)
TAIWAN UNIV (1)
texas agM Univ (1)
TTPI, SAIPAN (5)
TYPHOON COM SECR, MANILA (2)
UNESCAP, BANGKOK (2)
univ OC CHICAGO (1)
UNIV OF HAWAII DEPT OF MET (3)
UNIV OF HAWAII (LIBRARY) (1)
UNIV OF PHILIPPINES (5)
UNIV OF WASHINGTON (1)
UNSECDEF, PENTAGON (2)
USCINCPAC (1)
USS BELLEAU WOOD (1)
USS CONSTELLATION (1)
USS CORAL SEA (1)
USS ENTERPRISE (1)
USS KITTY HAWK (1)
USS LONG BEACH (2)
USS MIDWAY (1)
USS NEW ORLEANS (1)
USS OKINAWA (1)
USS RANGER (1)
USS TARAWA (1)
USS TRIPOLI (2)
USS CARL VINSON (1)
WEA SERV MET OBS, AGANA (2)
WEATHER MODIFICATION PROGRAM OFFICE (1)
WORLD DATA CENTER A, NOAA (2)
WORLD WEATHER BLDG, MD (1)
1WW/DON (3)
\(3 \mathrm{AD} / \mathrm{DO}\) (1)
3WW/CC (1)
\(5 \mathrm{WW} / \mathrm{CC}\) (1)
17 WS/DO (1)
30WS/CC (2)
34 AWF, 920 WRG (1)
41 RWRW/OL-D (2)
43 SW/DO (1)
54WRS/CC (4)
73 WEATHER GROUP, ROK AF (2)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverae side if necessary and tdentliy by block number)
\begin{tabular}{ll} 
Tropical cyclones & Tropical depressions \\
Tropical cyclone forecasting & Tropical storms \\
Tropical cyclone research & Typhoons/Super Typhoons \\
Tropical cyclone best track data & Meteorological satellite \\
Tropical cyclone fix data & Aircraft reconnaissance
\end{tabular}
20. ABSTRACT (Contlnue on reverse aide if noceesary and identify by block number)

Annual publication summarizing the tropical cyclone season in the western North Pacific, Bay of Bengal and Arabian Sea. A brief narrative is given on each significant tropical cyclone including its best track. All reconnaissance data used to construct the best tracks are provided. Forecast verification data and statistics for the JTWC are summarized.

Block 19, (Continued)
Dynamic tropical cyclone models Typhoon analog model
Tropical cyclone steering model
Climatology/persistence techniques


Tropical Cyclone 30S (Kamisy) on 9 April 1984, one day after the front cover photograph. Mission 41C orbit was directly over the storm. This nadir view was taken with a 250 mm lens. To give a sense of size, the picture is approximately 55 by \(55 \mathrm{~nm}(102 \mathrm{by} 102 \mathrm{~km})\). The eye diameter is \(10 \mathrm{~nm}(19 \mathrm{~km})\). Note the overshooting tops through the tropopause in the eyewall convection. The resalution with this lens is 40 to 50 meters. (Photograph provided by LCDR W. T. Aldinger, NAVPOLAROCEANCEN Detachment, Johnson Space Center, Texas).```

